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1.  INTRODUCCIÓN 

1.1. CONTEXTO GENERAL DEL PROYECTO 

El presente proyecto se enmarca dentro de un proyecto internacional de la Agencia de 
Defensa Europea  (EDA) categoría B denominado Sistemas Multirobot en Red, con el 
acrónimo NM-RS (Networked Multi-Robot Systems) cuyo principal objetivo 
es el desarrollo de un demostrador virtual que permita analizar la eficacia de la 
utilización de sistemas multi-robot en red frente al uso de robots individuales o uso de 
tropas en tareas del ámbito de la defensa.  

Uno de los principales objetivos de la actividad de investigación y tecnología de la EDA 
es catalizar más colaboraciones en proyectos de investigación, cubriendo una amplia 
gama de rangos en las tecnologías. En general, estos trabajos colaborativos entran 
dentro de uno de dos tipos, según lo establecido en la Acción Común de la agencia [1]: 

• Categoría A. Los proyectos o programas categoría A han sido propuestos por 
uno o más países miembros o por el jefe ejecutivo de la Agencia y cuentan con 
la participación de los 26 países miembros a menos que decidan no participar. 
Un ejemplo de colaboración de este tipo es el anterior  programa de inversión 
común sobre protección de la fuerza. 

• Categoría B. Los proyectos o programas categoría B se establecen por uno o 
más países miembros  y en principio están abiertos a la participación de todos 
los países miembros. Sin embargo, en la práctica, los proyectos categoría B  
tienden a involucrar un número menor de paises miembros porque estos 
decidan no entrar a formar parte. 

El proyecto NM-RS está centrado en el desarrollo de tácticas y procedimientos  para 
emplear nuevos sistemas robóticos en batallas, destinados a la ejecución de misiones 
durante periodos mucho más largos que sus homólogos tripulados. NM-RS 
proporcionará una plataforma de simulación de sistemas compuestos de varios robots 
que se mueven de forma autónoma supervisada, en  entornos  estructurados y no 
estructurados. Adicionalmente, este dispositivo de simulación proporcionará la 
capacidad para entrenar y controlar  sistemas  no tripulados en ambientes 
colaborativos. 

Otra capacidad de la plataforma consiste en proporcionar  al  personal la capacidad 
para entrenarse con los sistemas robóticos mediante e la experimentación con las 
interfaces  de operación, como por ejemplo para determinar el número de sistemas no 
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tripulados que una tripulación de infantería puede controlar bajo una variedad de 
escenarios posibles. El software de simulación será usado en el futuro para controlar 
un equipo robótico. 

Como objetivo del proyecto NM-RS, se  incluye el desarrollo de  algoritmos multi-robot 
para la realización de tareas cooperativas en presencia de diferentes niveles de 
comunicación entre los robots.  

Estas técnicas innovadoras permitirán a los robots construir memorias de sus 
experiencias sobre el entorno, evaluar la utilidad de las alternativas de acciones 
cooperativas y entonces seleccionar acciones a realizar de tal forma que se 
incremente la probabilidad de que el objetivo global se cumpla, más allá de las 
decisiones individuales de cada robot [2]. 

1.2. ALCANCE  DEL  PROYECTO  FINAL  DE CARRERA DENTRO DEL 
NM-RS 

El proyecto NM-RS tiene una arquitectura modular. Cada módulo  tiene una 
funcionalidad específica,  y comparte  información  con el resto de los módulos 
mediante unas interfaces minuciosamente diseñadas. 

Dado el gran número de módulos existentes en el conjunto de la aplicación, 
únicamente  se van a describen brevemente los módulos indispensables para la 
comprensión del presente proyecto final de carrera. 

El alcance del proyecto final de carrera se encuentra ubicado como parte  principal del 
módulo denominado “Navegación-DataMapping” (M44).  

Los principales aspectos funcionales de este módulo consisten en realización de la 
fusión sensorial de los sistemas de navegación (Unidad inercial, GPS y odometría) y la 
utilización de la solución de navegación junto con un sistema de láser de barrido 
horizontal y vertical para la confección de mapas tridimensionales del entorno, esta 
última tarea  prácticamente coincide con el alcance del proyecto final de carrera que 
aquí se presenta.  

Por otro lado, otra tarea fundamental del módulo (igualmente incluida en el alcance del 
proyecto final de carrera) consiste en la utilización de  la información de los mapas y 
los datos del láser para la realización de un sistema de localización para las 
situaciones en las que la precisión o disponibilidad del GPS no permita una correcta 
localización del robot. 

El módulo M44 descrito requiere compartir información de otros módulos de la 
plataforma de simulación, en concreto con los que proporcionan información de los 
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sensores de navegación (GSP, odometría, etc.,), el módulo que proporciona 
información del láser tridimensional y los datos físicos del robot. 

Por último, el módulo M44 proporciona como salidas a otros módulos la siguiente 
información:  

• Posición estimada del robot. 

• Posición estimada realizando SLAM. 

• Mapa de baja resolución actualizado. 

• Mapa de alta resolución. 

• Lista de objetos dinámicos detectados. 

Una representación de alto nivel de las interfaces mencionadas podría ser la siguiente: 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

1.3. OBJETIVOS DEL PROYECTO 

Como análisis adicional a las interfaces ya mencionadas, es necesario comprender los 
niveles de fusión de información que se desarrollan para poder enmarcar el presente 
proyecto fin de carrera dentro de la globalidad del NM-RS. Los algoritmos utilizados 
reposan sobre un modelo de robótica probabilística donde se utiliza frecuentemente el 
filtro de Kalman como herramienta para poder estimar el estado final del robot a partir 

Figura 1. Esquema a alto nivel de las interfaces del proyecto NM-RS 

M44

Datos del robot  Medición de distancia   Ángulos de giro 
Datos Odometría 
Información sobre Autonomía 

Matriz Láser 

Estimación del estado del robot 
Estimación del estado con SLAM 
Mapa de baja resolución 
Mapa de alta resolución 
Objetos dinámicos 
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de la estimación actual, las medidas observadas por los sensores y la entrada aplicada 
al sistema.  

De esta forma, la parte principal de este proyecto utiliza como entradas información 
procedente de fusión de datos con filtro Kalman y a su vez proporcionara como salida 
otra información necesaria para una posterior fusión con otros filtro Kalman. Así, el 
presente proyecto es un intermediario entre dos bloques de robótica probabilística que  
la información de forma determinista.  

De esta forma el proyecto se enmarca de la siguiente forma: 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figura 2. Integración de los diferentes elementos del sistema de posicionamiento 
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Una vez descrito el entorno de trabajo, se pasará a describir los objetivos del presente 
proyecto fin de carrera.  

• Creación de un mapa local de alta resolución en modelo de celdas del terreno 
que incluye la siguiente  información: 

o Modelo digital del terreno 

o Estimación de  gradientes  para determinar, atendiendo a los requisitos 
de cada robot, si la celda es transitable o no. 

o Nivel de comunicaciones y señal GPS en cada celda 

o Nivel de  confianza sobre los valores almacenados en cada celda. 

• Creación de un mapa general de baja resolución mediante la fusión de un 
mapa general recibido de un sistema central y la información que contiene el 
mapa local de alta resolución que elabora el propio robot. 

• Desarrollo un algoritmo de SLAM (Simultaneous Location and Mapping) de  
forma que proporcione  una estimación adicional  de la posición del robot 
basado en la comparación de la información que tiene el robot del entorno 
(mapa local) y la información del láser. Esta tarea se desarrolla únicamente 
cuando la precisión de la estimación de posición que proviene del GPS es de 
muy baja calidad o nula. La estimación procedente del algoritmo de SLAM se 
incorpora como estimación a un  al sistema de GNC (Guiado Navegación y 
Control) basado en sensores. 

 

1.4.  EL  FILTRO DE KALMAN 

La localización basada en el filtro de Kalman es la más extendida en la literatura y en 
implementaciones prácticas y debido a sus buenas propiedades, es apropiada para la 
mayoría de las aplicaciones siendo la que se ha utilizado para el desarrollo del 
presente proyecto. 

El filtro de Kalman es un algoritmo recursivo óptimo para procesar información [3]. 
Combina la totalidad de la información disponible, ponderándola según su grado de 
incertidumbre, para realizar la estimación de las variables que definan el estado del 
sistema. El funcionamiento del filtro requiere el conocimiento de la dinámica del 
sistema, así como de los modelos estadísticos del ruido en las medidas de los 
sensores y de la incertidumbre inicial del modelo del sistema. Al tratarse de un 
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algoritmo recursivo, cada estimación se efectúa a partir de la anterior y de la nueva 
información disponible, sin que sea preciso almacenar todos los datos previos. 

El filtro de Kalman permite minimizar el error en la estimación de las variables de 
interés cuando el modelo es lineal y la incertidumbre del sistema y de las medidas de 
los sensores es ruido blanco gaussiano. En esta situación, la función de densidad de 
probabilidad de cada variable a analizar condicionada a las medidas tomadas es tal 
que la media, la moda y la mediana coinciden, lo que evita cualquier posible conflicto a 
la hora de determinar cuál es la mejor estimación. Las hipótesis aceptadas pueden 
parecer altamente restrictivas pero hacen posible la resolución matemática del 
problema y se acercan bastante bien a la realidad en la mayoría de los casos. En otros 
sin embargo, han de contemplarse algunas variaciones y resulta de utilidad el llamado 
filtro extendido de Kalman (EKF) [4]. 

Para mayor información acerca de las ecuaciones y el algoritmo utilizado por el filtro 
Kalman consúltese el anexo IV dedicado al mismo. El algoritmo basado en el filtro de 
Kalman forma parte fundamental del sistema de posicionamiento del robot  pero no ha 
sido objeto de desarrollo por el presente proyecto fin de carrera por lo que no se hará 
un comentario más extenso del mismo. 
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2. Estado del arte 

2.1.  CONSTRUCCIÓN DE MAPAS DINÁMICOS 

2.1.1. Introducción 

Una de las claves en robótica móvil es el conocimiento y la representación del entorno 
en que se mueve el robot, en concreto, representar la existencia de obstáculos con los 
cuales este puede chocar en su movimiento por el mundo.  

Tradicionalmente, esa representación o mapa del entorno era introducida en el robot 
por el diseñador humano. El progreso hacia una mayor autonomía en los robots 
navegantes ha llevado a dotarlos de mecanismos que les permiten construir y 
mantener autónomamente esos mapas desde su propia información sensorial. La 
mayoría de los trabajos en representación del entorno para robots móviles dividen la 
información en dos partes que se tratan separadamente. Primeramente un mapa 
global refleja los obstáculos estáticos como paredes, armarios, etc. y permite 
planificación de largo plazo. En segundo lugar una representación instantánea, 
básicamente la última lectura sensorial, que permite reaccionar a obstáculos 
imprevistos. En esta exposición se comentaran varias técnicas de construcción de 
mapas con la idea de mantener una representación local al robot que capture el 
dinamismo de los objetos móviles a su alrededor. Dentro de los mapas métricos se 
puede distinguir entre dos tipos, el modelo de elementos geométricos  y el de celdas 
de ocupación.  

En el primero se dispone de unas primitivas de representación (puntos, esquinas, 
paredes, objetos, etc.) cuya posición se estima constantemente desde la información 
sensorial. 

 

El segundo, que representa el espacio como un mallado regular de celdas cada una 
de las cuales contiene la creencia en que esa posición en el mundo esté ocupada o 
no. No necesita estructura en el entorno para conseguir una representación adecuada 
y facilita la fusión de datos sensoriales procedentes de sensores muy distintos. 
Adicionalmente, este segundo modelo representa explícitamente el espacio vacío, que 
resulta muy útil para la tarea de sortear obstáculos.  

En la Figura 3, se puede observar un ejemplo de una rejilla alrededor del robot, las 
casillas oscuras indican la presencia de un obstáculo en ellas, y las claras de espacio 
vacío. Para comparar las distintas técnicas de construcción de mapas dinámicos se ha 
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utilizado la información proporcionada por los sensores sonar de un robot B21 
comercial. Este tipo de sensor mide la distancia al objeto más próximo utilizando el eco 
de una onda ultrasónica y su empleo está muy difundido en la comunidad robótica. Las 
técnicas descritas también se han utilizado en un robot de exteriores casero, equipado 
con un sensor láser de proximidad, que proporciona medidas de ocupación mucho 
más fiables. En ambos casos las técnicas de construcción son exactamente las 
mismas, sólo se ha variado el modelo sensorial para reflejar las peculiaridades de 
cada sensor [5]. 

 

Figura 3. Ejemplo de grid construido con el robot B21 (izqda.) y lecturas sonar instantáneas 
(dcha.) Adaptada de José María Cañas y Lía García, 2002. [5] 

 

2.1.2. Fusión de la información 

Un robot autónomo percibe el estado de su entorno a través de sus sensores. La 
última lectura de todos sus sensores le proporciona una instantánea sobre el estado 
de sus alrededores, como muestra la Figura 3. Sin fusionar lecturas siempre se tendrá 
esta instantánea sensorial, continuamente refrescada. Debido a su simplicidad  y a su 
vivacidad, esta representación ha sido utilizada en muchos casos para construir 
comportamientos reactivos sobre ella, por ejemplo el sorteo de obstáculos. 

Se utiliza una rejilla para materializar la fusión de información procedente de múltiples 
lecturas sensoriales. Con una rejilla se puede recordar la información de zonas 
próximas o zonas que de repente quedan ocluidas por un obstáculo intermedio. La 
fusión también ayuda a depurar errores sensoriales y perfilar mejor el contorno de los 
obstáculos, compensando las lecturas erróneas con las medidas correctas, 
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previsiblemente más numerosas. Esta compensación es especialmente adecuada 
para los sensores sonar porque sus medidas son propensas a ruidos. 

Finalmente, la fusión también permite la identificación de estímulos complejos, que no 
caben en una lectura instantánea. Permite acumular indicios, evidencias parciales. 
Esto resulta crucial cuando una instantánea sensorial por sí sola no es concluyente 
sobre la existencia de tal o cual estímulo. Un ejemplo podría ser el estímulo pared. La 
ultima instantánea sonar se ve afectada por la existencia de una pared próxima o no, 
pero desde esa instantánea es imposible distinguir si se trata de una pared o de 
cualquier otro obstáculo. Será la acumulación de varias lecturas, y el alineamiento de 
las celdillas ocupadas lo que permitirá concluir que el obstáculo concreto es una pared 
[5]. 

2.1.3. Escenarios y entorno 

Normalmente se tendrá al robot midiendo continuamente el estado de su entorno a la 
vez que realiza sus maniobras. Se tendrá un flujo constante de lecturas sensoriales, 
no un conjunto finito y estático. La construcción en tiempo real de una representación 
razonable irá en paralelo a la toma de decisiones sobre esa misma representación. 

Otro requisito importante es su carácter dinámico. El objetivo de los mapas del entorno 
que se generan es servir de base para todos los comportamientos del robot, incluido 
los reactivos. Por lo tanto deben reflejar con celeridad los cambios, tanto los nuevos 
obstáculos que aparecen como los nuevos huecos que surgen cuando los obstáculos 
se mueven. 

Este escenario dinámico y en tiempo real es radicalmente distinto de la construcción 
de mapas estáticos, donde interesa reflejar los obstáculos fijos de determinado 
entorno y los mapas se pueden construir fuera de línea [5]. 

2.1.4. Enfoques y teorías 

El problema de construcción y mantenimiento de celdas de ocupación ha sido 
ampliamente abordado en la literatura técnica específica. En general este problema se 
ha dividido en dos etapas. Primeramente se captura toda la información que 
proporciona una nueva lectura del sensor sobre la ocupación del espacio, siguiendo 
determinado modelo sensorial. En la segunda etapa esa información se utiliza para 
actualizar la creencia acumulada, materializando la fusión con otras medidas 
anteriores. La geometría de los modelos no se ha tenido en cuenta en la comparativa 
de esta exposición, que hace énfasis en el dinamismo de la regla de actualización. 

En esta sección se ha  agrupado los enfoques más representativos a la hora de 
representar la creencia de ocupación y de incorporar la información de nuevas 
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observaciones sensoriales: el modelo probabilístico bayesiano, la teoría de la 
evidencia, los conjuntos borrosos y el enfoque histográmico de Borenstein [5]. 

2.1.4.1. Enfoque probabilístico 

El enfoque probabilístico es el más utilizado en la bibliografía. Se asume que cada 
celda del mapa puede tener únicamente uno de los dos estados: ocupada o vacía, que 
se tratará de estimar desde las observaciones sensoriales acumuladas. El 
conocimiento que el robot tiene en el instante t sobre la ocupación de la celdilla situada 
en (x, y) se refleja en la probabilidad de que la celdilla esté en alguno de los dos 
estados posibles condicionada a las observaciones que se han obtenido hasta ese 
momento. Así lo expresa la ecuación (1), donde ݀ܽܽݐሺݐ െ 1ሻ supone el conjunto de 
observaciones acumuladas hasta el instante ݐ െ 1 y ݏܾ݋ሺݐሻ la observación actual. 
Cuando la probabilidad de ocupación es cercana a 0 entonces se está muy seguro que 
la celda está vacía. Por el contrario cuando es próxima a 1 entonces se tiene mucha 
confianza en que esa celda está ocupada. Inicialmente todas las casillas del grid 
tienen valor 0.5, reflejando el desconocimiento total. 

En desarrollos probabilísticos recientes se parte del modelo sensor a posteriori, que 
marca la probabilidad de que la celdilla está ocupada o no dado tal o cual lectura del 
sonar ݏܾ݋ሺݐሻ es decir, ݌ሺݏܾ݋|ܽ݀ܽ݌ݑܿ݋ሺݐሻሻ.  

Por ejemplo en [6] se utiliza un modelo sonar que vale ݌൫ܽ݀ܽ݌ݑܿ݋หݏܾ݋ሺݐሻ൯ ൌ 0.4 en las 
celdillas más cercanas al sensor que el radio observado y  ݌ሺݏܾ݋|ܽ݀ܽ݌ݑܿ݋ሺݐሻሻ=0.6  en 
las celdillas más o menos coincidentes con ese radio. Para celdillas más distantes el 
modelo ofrece  ݌ሺݏܾ݋|ܽ݀ܽ݌ݑܿ݋ሺݐሻሻ=0.5, que no aporta ninguna información en el 
enfoque probabilístico. Cuanto más se acerque a los extremos de probabilidad, 0 ó 1, 
más certidumbre aporta esa medida en un sentido u otro. 

Actualización con regla de Bayes 

A medida que el robot recibe nuevas observaciones sensoriales su información se va 
incorporando al mapa,  actualizando las probabilidades almacenadas y haciéndolas 
evolucionar. Siguiendo el desarrollo de (1) y (2) se llega a la formulación incremental 
(3) de la regla de Bayes. Esta formulación maneja modelo a posteriori del sensor y 
ratios de probabilidad, definido como (2) 

,ሺ௫,௬ሻܥ௢௖௨௣௔ௗ௔൫݌ ൯ݐ ൌ ܽ݀ܽ݌ݑܿ݋൫݌  ⁄ሻݐሺݏܾ݋ , ܽݐܽ݀ ሺݐ െ 1ሻ൯ 
(1) 

௠௔௣௔݌ ൌ ௢௖௨௣௔ௗ௔݌ ൫1 െ ⁄௢௖௨௣௔ௗ௔൯݌  
(2) 
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,ሺ௫,௬ሻܥ௠௔௣௔൫݌ ൯ݐ ൌ
௢௕௦݌

௔ ௣௥௜௢௥௜݌
כ ,ሺ௫,௬ሻܥ௠௔௣௔൫݌ ݐ െ 1൯ (3) 

Si una lectura sonar proporciona información sobre el estado de determinada celda 
 ሻ൯ en esa posición determina, aݐሺݏܾ݋หܽ݀ܽ݌ݑܿ݋൫݌ ሺ௫,௬ሻ el valor del modelo de sensorܥ

través de ݌௢௕௦, si allí  la probabilidad de ocupación sube o baja después de la nueva 
observación. El denominador ࢏࢘࢕࢏࢘࢖ ࢇ࢖ simplemente normaliza la influencia de ࢙࢈࢕࢖. Si  

ܽ݀ܽ݌ݑܿ݋൫݌ ൌ ሻ൯ݐሺݏܾ݋ ൌ  ሻ entonces la observación no aporta ningunaܽ݀ܽ݌ݑܿ݋ሺ݌ 
información adicional sobre el conocimiento a priori y la probabilidad acumulada no 
cambia. Si  ݌ሺܽ݀ܽ݌ݑܿ݋ ൌ ሻሻݐሺݏܾ݋  ൐  ሻ entonces aumenta la probabilidadܽ݀ܽ݌ݑܿ݋ሺ݌
global en la ocupación de esa celdilla. Recíprocamente, la probabilidad acumulada 
disminuye cuando ݌ሺܽ݀ܽ݌ݑܿ݋ ൌ ሻሻݐሺݏܾ݋  ൏  .ሻܽ݀ܽ݌ݑܿ݋ሺ݌ 

Utilizar probabilidades permite tener un marco teórico fiable a la hora de realizar 
ciertas operaciones, cálculos e hipótesis con la información disponible. Otra ventaja 
sustancial es que (3) permite una formulación incremental, muy eficiente desde el 
punto de vista de tiempo y memoria requeridas en la actualización. 

Uno de los inconvenientes de la actualización con regla de Bayes es que requiere que 
las distintas observaciones que se incorporan al mapa sean independientes, al menos 
en sentido markoviano. Esto no siempre se puede asegurar cuando se tiene un flujo 
continuo de mediciones. Otra desventaja es que no da medida alguna de confianza. 

2.1.4.2.  Teoría de la evidencia 

La teoría de la evidencia se basa en la definición de un campo de discernimiento  Θ, 
que es un conjunto de etiquetas que representan eventos mutuamente excluyentes. 
Tal y como se describe en [7], para la aplicación de mapas de ocupación las etiquetas 
interesantes son  Θ ൌ  ሼܧ,  ሽ porque las celdillas del grid pueden estar vacías, E, uܨ
ocupadas, F. Se define también una asignación básica de probabilidad como una 
función m:, ߰ ՜ ሾ0, 1ሿ  donde ߰  es el conjunto de todos los subconjuntos posibles de 
Θ, en este caso  ߰ ൌ ൛׎, ,ܧ ,ܨ ሼܧ,  ሽൟܨ

El estado de cada celdilla se define asignando números de probabilidad a cada 
etiqueta en ψ, en este caso cuatro números. Sin embargo asumiendo ݉௠௔௣௔ሺ׎ሻ ൌ  0 y 
aplicando (4) basta almacenar dos de ellos,   ݉௠௔௣௔ሺܧሻ  y ݉௠௔௣௔ሺܨሻ para caracterizar 
el conocimiento sobre la ocupación de la celdilla en este enfoque. 

El desconocimiento absoluto se refleja en ݉௠௔௣௔ሺܧሻ ൌ 0  ,  ݉௠௔௣௔ሺܨሻ ൌ 0  y por lo 
tanto ݉௠௔௣௔ሺܧ, ሻܨ ൌ 1  . Cuando se esta seguro que una celdilla esta vacía entonces  
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݉௠௔௣௔ሺܧሻ ൌ 1  y el resto se anula. Recíprocamente cuando se está seguro de que 
está ocupada ݉௠௔௣௔ሺܧሻ ൌ  0 . 

La geometría de sensor que emplea [7] es un cono de propagación. Para las celdillas 

dentro del arco el modelo viene dado por ሺ݉௦௘௡௦௢௥ሺܨሻ ൌ ଵ
௡

, ݉௦௘௡௦௢௥ሺܧሻ ൌ 0ሻ donde n 

corresponde al número de celdas situadas en el arco. Para las celdillas en el interior 
del sector el modelo utilizado es ሺ݉௦௘௡௦௢௥ሺܨሻ ൌ 0, ݉௦௘௡௦௢௥ሺܧሻ ൌ  .ሻߩ

 

Donde ߩ es un factor constante de ajuste que iguala la masa total de evidencia 
asignada a las celdas vacías y a las ocupadas en cada lectura [5]. 

ሻࡱሺ࢞,࢟ሻሺࢇ࢒࢒࢏ࢊ࢒ࢋࢉ࢓ ൅ ሻࡲሺ࢞,࢟ሻሺࢇ࢒࢒࢏ࢊ࢒ࢋࢉ࢓ ൅ ,ࡱሺ࢞,࢟ሻሺࢇ࢒࢒࢏ࢊ࢒ࢋࢉ࢓ ሻࡲ ൌ ૚ (4) 

Actualización con regla de Dempster-Shafer 

La regla de Dempster-Shafer permite combinar evidencias sobre el evento A, ݉ଵ(A) y 
݉ଶ(A) , que este  caso serían las asignaciones básicas de probabilidad acumuladas en 
cada celda del mapa para los eventos vacío E y ocupado F, y las proporcionadas por 
la última lectura sonar. Siguiendo el desarrollo  se llega por ejemplo a (6). 

ࢇ࢖ࢇ࢓࢓
࢚ ሺࡱሻ ൌ ൫ࢇ࢖ࢇ࢓࢓

࢚ି૚ ْ  ሻ (5)ࡱሺ࢚ሻ൯ሺ࢘࢕࢙࢔ࢋ࢙࢓

ࢇ࢖ࢇ࢓࢓
࢚ ሺࡱሻ

ൌ
 ࢇ࢖ࢇ࢓࢓

࢚ି૚ ሺࡱሻ࢘࢕࢙࢔ࢋ࢙࢓ሺ࢚ሻሺࡱሻ ൅ ࢇ࢖ࢇ࢓࢓
࢚ି૚ ሺࡱሻ࢘࢕࢙࢔ࢋ࢙࢓ሺ࢚ሻሺሼࡱ, ሽሻࡲ ൅  ࢇ࢖ࢇ࢓࢓

࢚ି૚ ሺሼࡱ, ሻࡱሺ࢚ሻሺ࢘࢕࢙࢔ࢋ࢙࢓ሽሻࡲ
૚ െ  ࢇ࢖ࢇ࢓࢓

࢚ି૚ ሺࡱሻ࢘࢕࢙࢔ࢋ࢙࢓ሺ࢚ሻሺࡲሻ െ  ࢇ࢖ࢇ࢓࢓
࢚ି૚ ሺࡲሻ࢘࢕࢙࢔ࢋ࢙࢓ሺ࢚ሻሺࡱሻ  (6) 

 

Una ventaja de este enfoque es que contempla explícitamente la ambigüedad tanto en 

las medidas como en la creencia acumulada. El factor ࢇ࢖ࢇ࢓࢓ሺ࢚ሻሺሼࡱ,  ሽሻ representa laࡲ

incertidumbre almacenada. También se representa la contradicción: una misma celdilla 
puede recoger a lo largo del tiempo tanto lecturas que indican que está ocupada 

 ሻ. Siࡲሺ࢚ሻሺࢇ࢖ࢇ࢓࢓ ሻ  como lecturas contradictorias que apuntan lo contrarioࡱሺ࢚ሻሺࢇ࢖ࢇ࢓࢓

queremos resumir la creencia en un único valor se necesita destilar esa creencia final 
convenientemente. En esa combinación irá implícitamente una compensación entre las 
evidencias de ocupación y vacío almacenadas en cada celdilla [5]. 
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2.1.4.3. Enfoque borroso 

En el enfoque borroso el mapa se almacena como dos conjuntos borrosos no 
complementarios: el de zonas vacías ε y el de zonas ocupadas o. Cada celda (x, y) del 
espacio pertenece en cierta medida a cada uno de los conjuntos y esa pertenencia es 
una función de pertenencia borrosa ߤ௘ሺݔ, ,ሻݕ ,ݔ௢ሺߤ  .ሻݕ

La información de una lectura sonar k se captura igualmente con dos conjuntos 
borrosos ߝ௞ y ݋௞ que reflejan precisamente la evidencia de vacío y ocupación que 
aporta esa lectura k a las diferentes celdas del espacio. Por ejemplo en [5] se utilizan 
los modelos de la Figura 4. 

 

Figura 4. Modelo borroso sonar para información de ocupación (izquierda) y de vacío 
(derecha). Adaptada de José María Cañas y Lía García, 2002. [5] 

Actualización con el operador borroso unión 

Los conjuntos borrosos con las creencias globales se definen como la unión borrosa 
de las evidencias recogidas en cada lectura (7) (8). La operación de unión borrosa es 
asociativa, por ello estas ecuaciones (7) y (8) permiten una implementación 
incremental, eficiente desde el punto de vista práctico. En la formulación clásica 
[Poloni95] se han propuesto varios operadores de unión borrosa: producto algebraico 
(9), producto acotado (10), operador Dombi, operador Yager. 

݋ ൌ  ራ ௜݋ ൌ ሺራ ௜ሻ݋ ራ ௞݋
௜ୀ௞ିଵ

௜ୀଵ

௜ୀ௞

௜ୀଵ

 (4) 

ߝ ൌ  ራ ௜ߝ ൌ ሺራ ௜ሻߝ ራ ௞ߝ
௜ୀ௞ିଵ

௜ୀଵ

௜ୀ௞

௜ୀଵ

 (5) 
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ቀܣ ራ ቁܤ ሺݔሻ ൌ ሻݔ஺ሺߤ ൅ ሻݔ஻ሺߤ െ ሻݔ஺ሺߤ כ  ሻ (6)ݔ஻ሺߤ

ቀܣ ራ ቁܤ ሺݔሻ ൌ min ሺ1, ሻݔ஺ሺߤ ൅  ሻሻ (7)ݔ஻ሺߤ

 

Una de las ventajas de la aproximación borrosa es que no necesita tantas asunciones 
teóricas como el desarrollo probabilístico y se tiene más libertad a la hora de diseñar el 
modelo sensorial y los operadores borrosos. 

Las evidencias de ocupación y de vacío no son contradictorias en este enfoque. 
Precisamente por ello la aproximación borrosa exhibe una mayor robustez frente a 
medidas erróneas esporádicas que el enfoque probabilístico. Combinando los dos 
conjuntos borrosos globales se puede distinguir entre zonas ambiguas y zonas 
desconocidas, es decir, información contradictoria y ausencia de información [5]. 

2.1.4.4. Enfoque histográmico 

El enfoque histográmico fue presentado por Johann Borenstein y Y. Koren. En él cada 
celda mantiene un valor de certidumbre CV indicando la confianza en la existencia de 
un obstáculo en esa posición, que se mueve entre ܥ ௠ܸ௜௡  ൌ ܥ ݕ 0  ௠ܸ௔௫  ൌ  15. Para 
utilizar el mapa se suele binarizar la creencia de ocupación comparando el valor 
almacenado en cada celda con cierto umbral, por ejemplo 12. Sólo las casillas con 
evidencia superior se consideran realmente ocupadas. 

 

 

Regla de actualización histográmica 

La mezcla de información se hace empleando una regla aditiva heurística  que suma el 
valor del modelo sensorial al acumulado en la celdilla. 

ܥ ௜ܸ,௝ሺݐ ൅ 1ሻ ൌ ܥ ௜ܸ,௝ሺݐሻ ൅ ∆ሺݐሻ ( 8) 

 

 



UPM Enrique del Sol Acero 23 

 

Figura 5. Modelos histográmicos. Adaptado José María Cañas y Lía García, 2002. [5]  

En el trabajo de Borenstein [9] sí hay un estudio explícito del carácter dinámico de la 
representación. La regla de actualización contempla la posibilidad de que la creencia 
pueda cambiar completamente de sentido con un número finito de observaciones 
sensoriales. Tantas veces como se necesite e independientemente de lo confiado que 
se estuviera en la creencia anterior. Se considera el número crítico de medidas 
necesarias para dar una creencia por firme. Ese valor marca la velocidad máxima de 
los obstáculos que puede reflejar el mapa tal y como está construido. Otra ventaja es 
que no necesita que las observaciones sensoriales sean independientes, se 
incorporan todas. Tampoco se hipotetiza como se distribuyen las medidas del sensor 
dada una configuración del mundo. Es la compensación entre unas y otras la que va 
conformando la distribución de probabilidad en el espacio. 

De este enfoque derivan los desarrollos del presente proyecto, adaptándolo según las 
necesidades y simplificando determinados aspectos. Considerando la utilización de un 
laser en lugar de un cono ultrasónico. 

2.1.5. Enfoques dinámicos 

Ya se han comentado las aproximaciones más destacadas en la literatura técnica, 
ahora se describen dos procedimientos para mejorar el dinamismo en la 
representación que se consigue con los enfoques anteriores. El primer enfoque se 
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basa en el grid histográmico, pero reemplazando la regla de actualización aditiva por 
una ecuación diferencial. En la segunda aproximación cada celda lleva asociada una 
memoria de corto plazo, en la que se van almacenando las últimas medidas. Se 
decide el estado de la celda por mayoría sobre esa memoria. 

El estado de ocupación de cada celdilla ܥሺ௫,௬ሻ es una variable gradual, continua, que 

oscila entre un valor máximo ܧ௠௔௫para señalar ocupación y un valor mínimo ܧ௠௜௡ ൌ
െܧ௠௔௫  para señalar certeza de vacío. 

En ambos procedimientos se utiliza un modelo lobular que asigna un peso positivo 
∆ሺݐሻ ൌ  ൅1 a las celdas situadas en el arco de ocupación y un peso negativo ∆ሺݐሻ ൌ
 െ1  a las situadas en el interior del lóbulo les asigna un valor negativo para indicar 
evidencia de vacío. Cuanto mayor es el valor absoluto mayor es la influencia de la 
medida en esa celdilla [5]. 

2.1.5.1. Actualización con ecuación diferencial 

En este enfoque se actualiza el estado de ocupación de cada celdilla siguiendo la 
ecuación diferencial (12).  El cambio en la creencia de ocupación seria un incremento 
o decremento dependiendo del signo de ∆ሺݐሻ. La amplitud del cambio depende de 
varios factores. 

,ሺ௫,௬ሻܥ൫ܽ݅ܿ݊݁݁ݎܿ ൯ݐ

ൌ ,ሺ௫,௬ሻܥ൫ܽ݅ܿ݊݁݁ݎܿ ݐ െ 1൯ ൅ ∆ሺݐሻ כ ሻݐሺ݊݋݅ܿܽݎݑݐܽݏ

כ ሻݐሺܽ݅ܿ݊݁ݑܿ݁ݏ כ  ݀݁݁݌ݏ

 

(9) 

݊݋݅ܿܽݎݑݐܽݏ ൌ ൜∆ሺݐሻ ൐ 0 ௠௔௫ܧ| െ ,ݔሺܽ݅ܿ݊݁݁ݎܿ ,ݕ ݐ െ 1ሻ|
∆ሺݐሻ ൏ 0 ௠௜௡ܧ| െ ,ݔሺܽ݅ܿ݊݁݁ݎܿ ,ݕ ݐ െ 1ሻ|ൠ ( 10) 

 

El factor saturación (13), acota el valor del incremento de tal modo que nunca se 
pasen los valores máximo y mínimo para la creencia. Este factor hace que afectando 
varias medidas con el mismo peso a la celda, las novedosas tengan más influencia, 
provoquen mas cambio en la creencia. Esto permite en la práctica cambios de opinión 
muy rápidos, para reflejar el posible movimiento de obstáculos. Además cuando se 



UPM Enrique del Sol Acero 25 

está muy seguro de la ocupación de la celdilla, nuevas observaciones en este sentido 
apenas aportan información. 

El parámetro speed, entre 0 y 1, constante para todo el grid, modula la velocidad de 
cambio de estado. Con el se parametriza el número de medidas necesarias para 
cambiar totalmente de creencia, menor cuanto mayor es speed. 

Finalmente el factor secuencia, entre 0 y 1, refuerza el efecto de las medidas cuando 
estas aparecen seguidas, de tal manera que las medidas aisladas quedan 
aminoradas. Su valor se encuentra entre 0 y 1, y se calcula sobre una pequeña 
memoria de evidencias asociada a la celdilla. Si la última evidencia aparece en una 
secuencia de evidencias del mismo signo su influencia será mayor que si las 
anteriores son de signo contrario. En cierto modo este factor retarda el efecto de las 
sorpresas hasta que se van confirmando con una secuencia de lecturas en el mismo 
sentido. 

La ecuación diferencial propuesta, por su propia naturaleza ofrece un alto dinamismo 
en la creencia y logra que las medidas recientes influyan en el estado de ocupación 
sistemáticamente más que las antiguas. Adicionalmente se ha incluido un mecanismo 
de olvido que periódicamente (1 segundo) multiplica la creencia de todas las celdillas 
por un factor olvido = 0:98. Este mecanismo acerca iterativamente la creencia de 
ocupación de todas las celdillas al estado de desconocimiento, creencia ሺܥሺ௫,௬ሻ, ሻݐ ؄ 0 
y fuerza a que estas se refresquen constantemente con nuevas observaciones. 

2.1.5.2. Decisión por mayoría 

En cada celdilla ܥሺ௫,௬ሻ se almacena, con orden temporal, la información que aportan las 

últimas N medidas que afectan a la celdilla: ∆ሺݐ െ 1ሻ, ∆ሺݐ െ 2ሻ, … ∆ሺݐ െ ܰሻ. Sumando 
los valores en memoria se tiene el peso acumulado. El peso acumulado ∑ ሺ݅ሻே݋ݏ݁݌

௜ୀଵ  
oscila entre -N y +N. Con este peso acumulado se estima la ocupación de la celdilla 
siguiendo la función de la figura siguiente. 
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Figura 6. Estado de ocupación en función de los pesos almacenados en la memoria de la 
cedilla (izda.). Latencia del enfoque por mayoría (dcha.). Adaptada de José María Cañas y Lía 
García, 2002. [5] 

En el eje vertical se ve el estado de ocupación final y en las abscisas el peso 
acumulado en la memoria de la celdilla. El umbral de ruido de la Figura 6 señala la 
cantidad mínima de evidencias necesarias para empezar a creer que la celdilla no esté 
libre. Este umbral inferior filtra las medidas erróneas espurreas, pues se necesita mías 
de una medida para confirmar que la celdilla puede estar ocupada. Las celdillas 
realmente ocupadas o vacías lo superan sin problemas acumulando enseguida 
evidencias que lo respaldan. 

A medida que se acumulan evidencias por encima de ese umbral, el estado de 
ocupación crece linealmente hasta alcanzar el valor máximo en el umbral de 
saturación. Este umbral superior introduce el fenómeno de saturación en la creencia. 
Esta saturación ecualiza las zonas del espacio por donde más y menos tiempo se ha 
movido el robot, con tal que las evidencias recogidas sean suficientes para concluir un 
estado u otro de la celdilla. 

Sobre una misma celdilla pueden caer varias evidencias contradictorias, de  ocupación 
y de vacío. Con este enfoque se observa claramente que unas lecturas compensan a 
otras. La idea aquí es que una lectura errónea no sesga la creencia frente a una 
mayoría de lecturas correctas. Para modular esa compensación el enfoque permite 
asignar distintos pesos a evidencias de ocupación, lejanas, cercanas, de vacío, etc. 

Con este enfoque la inserción de observaciones nuevas refresca el contenido de la  
memoria local, de esta manera la creencia de ocupación esta siempre actualizada. 
Adicionalmente se ha añadido un mecanismo artificial de olvido que  periódicamente 
inserta observaciones neutras para eliminar observaciones antiguas. Gracias a esto la 
creencia acaba envejeciendo en ausencia de lecturas recientes [5]. 
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2.1.6. Criterio de vivacidad VS. Criterio de robustez 

En la literatura existen  muchas comparativas pero pocas veces se ha evaluado 
explícitamente el comportamiento dinámico del algoritmo de construcción automática 
de mapas. Los enfoques más utilizados tienen un carácter estático subyacente en el 
cual no importa demasiado la velocidad en adquirir determinada creencia de 
ocupación, más bien su corrección. La compensación entre medidas persigue 
principalmente corregir algunas incertidumbres relativas al sensor. 

 En el caso de mapas dinámicos el estado de ocupación real puede cambiar con el 
tiempo, por lo tanto la regla de actualización además debe buscar compensar las 
lecturas antiguas con las recientes. Se desea que la creencia cambie rápidamente si 
las lecturas nuevas apuntan un cambio en el estado de ocupación actual, para reflejar 
con vivacidad los movimientos de los obstáculos. Se definen dos ratios que 
caracterizan el comportamiento dinámico de los algoritmos constructores de 
representación: tiempo en incorporar obstáculo (TIO) y tiempo en incorporar hueco 
(TIH), que miden precisamente el número de medidas necesarias para que la creencia 
de ocupación confirme la ocupación o el vacío. Para medirlos utilizaremos unas 
secuencias de prueba que corresponden a observaciones que atañen a una misma 
celdilla. 

En contraposición al criterio de vivacidad tenemos el de robustez frente a lecturas 
inciertas. Esa compensación necesita cierta latencia para implementarse y una sola 
medida no modifica significativamente la creencia hasta que se confirma con nuevas 
observaciones. Entre estos dos criterios contrapuestos el algoritmo elegido establece 
un compromiso.  

2.1.7. Conclusiones 

Se han comentado las técnicas más populares de construcción y mantenimiento de 
mapas métricos en forma de rejilla. El enfoque probabilístico, la teoría de evidencia y 
el enfoque borroso resultan inválidos para representar características que puedan 
cambiar con el tiempo (por ejemplo la ocupación del espacio cuando hay obstáculos 
móviles). La principal razón es que tanto la regla de Bayes, la regla de Dempster-
Shafer y el operador borroso de unión exhiben la propiedad asociativa: dada una 
secuencia de lecturas sensoriales, el estado final de las celdillas del grid es el mismo 
con independencia del orden en que se incorporen esas lecturas 

 El enfoque probabilístico bayesiano muestra una inercia proporcional a las evidencias 
acumuladas, lo que ralentiza en exceso su cambio de creencia. En general necesita 
tantas evidencias de ocupación como de desocupación para cambiar el sentido de su 
estimación. En la práctica ofrece un mayor dinamismo debido a una limitación práctica 
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que obliga a manejar valores de probabilidad en el intervalo ሾߜ, 1 െ  ሿ. Esta restricciónߜ
desvirtúa todas las asunciones de probabilidad hechas y no forma parte explícita del 
formalismo bayesiano.  

La teoría de la evidencia deriva en los mismos resultados que la probabilística una vez 
que se incorpora un reducido número de lecturas iniciales. Después de esas medidas 
la ambigüedad en la estimación ݉௠௔௣௔ሺܧ,  ሻ se anula y la evolución de ambosܨ
enfoques es similar. Las mismas restricciones se aplican.  

El enfoque borroso clásico presenta un bloqueo inaceptable tras incorporar un 
pequeño número de lecturas sensoriales. No funciona bien si se tiene un flujo continuo 
de medidas. La razón de este bloqueo radica que el operador borroso de unión sea 
una función monótona creciente. Existen nuevas teorías dentro de este enfoque que 
proponen nuevos operadores borrosos que superan este bloqueo y lo acercan a una 
sencilla media aritmética.  

Por el contrario el enfoque histográmico, de decisión por mayoría y el basado en 
ecuación diferencial sí refleja el dinamismo de la realidad. Todos ellos distinguen entre 
 ஻, el estado final es distinto en ambos casos. En estosܽ݅ܿ݊݁ݑܿ݁ݏ ஺ yܽ݅ܿ݊݁ݑܿ݁ݏ
enfoques por muy seguro que se esté que tal celdilla está ocupada, basta un número 
relevante de lecturas en sentido contrario para cambiar radicalmente de creencia. Este 
dinamismo de representación es imprescindible para representar obstáculos móviles y 
resulta útil incluso con obstáculos estáticos si se arrastran errores de localización. El 
uso de técnicas estáticas obliga a mantener una localización absoluta precisa, para no 
mezclar evidencias de distintas celdillas. 

El perfeccionamiento de los procedimientos descritos debe pasar por segmentar el grid 
dinámico de ocupación y a utilizar las técnicas dinámicas para detectar puertas sin 
localización absoluta fiable [5]. 

2.2. Localización y mapeado simultáneo   

2.2.1. Introducción 

Un robot móvil debe conocer donde se encuentra dentro de un entorno para poder 
navegar de forma autónoma e inteligente. La auto-localización y el conocimiento del 
emplazamiento de otros objetos requiere la existencia de un mapa y este 
requerimiento básico ha propiciado el desarrollo de los algoritmos de localización y 
mapeo simultáneos “SLAM” (Simultaneous Location and Mapping) durante las dos 
décadas pasadas, en los que el robot construye un mapa mientras explora el entorno.  

La forma predominante de SLAM hasta día de hoy es SLAM estocástico introducido 
por Smith [10]. El SLAM estocástico tiene en cuenta de forma explícita los errores 
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introducidos por las medidas tomadas por los sensores: los errores en las medidas 
introducen incertidumbres en la estimación del emplazamiento de marcas, las cuales 
se tornan en incertidumbre en la localización del robot, por ello la estimación de la 
posición de las marcas y del robot son dependientes. 

 La mayoría de implementaciones prácticas del SLAM representan dichas 
incertidumbres y correlaciones mediante la función de densidad de probabilidad 
gaussiana (PDF), y propagan dichas incertidumbres mediante el filtro de Kalman 
extendido (EKF). Esta forma de SLAM es conocido como EKF-SLAM. Un problema 
con el EFK-SLAM e que requiere modelos de marcas basados en formas geométricas 
para tener en cuenta los datos medidos lo que limita las aproximaciones a entornos en 
los que dichos modelos no sean adecuados [11]. 

2.2.2. Tipos fundamentales de SLAM 

Un tema importante dentro del EKF-SLAM es el diseño del modelo de observación. 
Las implementaciones actuales requieren como se ha dicho la utilización de formas 
geométricas para modelar la observación, tales como líneas, círculos esplines. Las 
medidas deben encajar en alguna de las categorías geométricas disponibles para ser 
clasificadas como un punto característico y los datos que no encajen con ninguna son 
desechados. El principal problema, es que tienden a ser específicos del entorno por el 
que se desplace el robot por ello un modelo que se comporte bien en un determinado 
entorno puede no funcionar en otro y desperdiciar una gran cantidad de información. 

Una alternativa a los modelos de características analíticas es el procedimiento llamado 
“scan correlation”, basado en calcular la máxima probabilidad de alineamiento entre 
dos medidas en bruto de los sensores. 

 Dado una serie de medidas observadas, escáneres realizados por el robot o mapas 
locales y un mapa de referencia es posible que el robot se localice sin convertir sus 
medidas a ningún tipo de forma geométrica. Las observaciones son sencillamente 
alineadas con los datos del mapa de forma que se maximice las correlaciones de las 
medidas. El método scan correlation ha sido ampliamente usado cuando se posee un 
mapa a priori del entorno mediante el algoritmo  iterated closet point (ICP) mediante 
rejillas de ocupación siendo el más popular de los métodos usados. Este tipo de 
algoritmos están basados en un método iterativo donde se calcula en primer lugar las 
correspondencias entre escaneos y posteriormente se trata de minimizar el error en la 
distancia para calcular el desplazamiento del sensor. Este proceso es repetido  con 
una nueva estimación hasta la convergencia.  Una característica común a la mayoría 
de versiones de ICP es el uso de la distancia euclídea para establecer 
correspondencias  y aplicar mínimos cuadrados. Sin embargo, esta distancia no toma 
en cuenta el hecho de que los puntos lejanos al sensor pudieran encontrarse lejos 
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debido a rotaciones en el propio sensor. Para superar esto se ha propuesto el cálculo 
de dos tipos de correspondencias, una es la distancia euclídea y otra la distancia 
angular (para capturar la rotación del sensor). La ganancia en precisión es perdida en 
complejidad y convergencia ya que estos métodos realizan dos procesos de 
emparejado o “matching“  y minimización para cada iteración. Se entiende que estos 
son los dos principales problemas para los algoritmos ICP: encontrar una forma 
adecuada de medir la cercanía y aplicar la minimización. 

Dos métodos importantes han sido presentados  para realizar el SLAM  mediante scan 
correlation. El primero, usa la maximización de la esperanza (EM) para maximizar la 
correlación entre escaneos lo que resulta en un set de estimaciones sobre la posición 
del robot que producen un alineamiento óptimo entre todos los escaneos. El segundo 
método, llamado estimación consistente de la posición (CPE), acumula una historia 
seleccionada de escaneos y alineamientos formando una red. 

El principal inconveniente con los métodos existentes para SLAM aplicando scan 
correlation  es que no realizan la fusión de datos, y en lugar de ello se requiere de una 
serie de escaneos almacenada y que no son compatibles con la forma tradicional de la 
formulación de EKF-SLAM.  

Otro método bastante novedoso denominado Scan-SLAM que intenta solventar las 
deficiencias de ambos métodos siendo idéntico al convencional  EKF-SLAM excepto 
en la definición del modelo de marcas, que está comenzando a ser usado. En este 
modelo las marcas son definidos mediante una plantilla con los datos del sensor en 
bruto: los observados mediante un proceso de scan-matching. Este proceso da lugar a 
un modelo genérico de observación basado en la localización de un sistema de 
coordenadas local embebido en cada plantilla de marcas. Las plantillas también 
facilitan una estrategia de asociación de datos [11]. 
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Lógicamente, la información procesada y generada a medida que avanza la 
reconstrucción, y tanto para operaciones y cálculos intermedios como para la 
presentación final de los datos se utilizarán estructuras formadas por distintos tipos de 
datos, como números enteros, números en coma flotante o incluso estructuras. 

Como requisito del proyecto se requiere la utilización de mapas discretos formados por 
celdas de tamaño determinado por las condiciones de cada ensayo que se desee 
realizar. Para tomar una idea del orden de magnitud de las dimensiones de cada 
celda, podremos tomar de 0.5 a 1.5 m las dimensiones del lado para las celdas de los 
mapas de alta resolución y de 2 a 10 m las dimensiones del lado de una celda de los 
mapas de baja resolución. 

Todas las celdas de un mismo mapa presentan la misma dimensión. No se utilizan 
celdas irregulares ni una división en función del área de interés.  

Tal y como se ha mencionado, existen fundamentalmente dos tipos de mapas, de alta 
resolución y de baja resolución. La única diferencia reside en el espacio físico real que 
ambos pueden representar. En el mapa de baja resolución se representa en principio 
la información correspondiente a todo el entorno  de simulación del robot, mientras que 
en el mapa de alta se representa la información detallada de una zona del mapa 
cercana en distancia al robot. 

Se han definido tres tipos de mapas: 

• Low Resolution Map Global: mapa global inicial en baja resolución. Representa 
el conocimiento previo que se tiene del terreno y es la información de partida 
del robot. Según se va realizando la reconstrucción, este mapa aglutina las 
reconstrucciones parciales realizadas por los diferentes robots.  

• Low Resolution Map: es una copia local (en cada robot)  del anterior, que 
realiza el robot al inicio de su operación. Todas las actualizaciones que este 
haga sobre el terreno se realizan en el LowResMap.  

• High Resolution Map: es el mapa local en alta resolución. 

La estructura de forma general para ambos tipos de mapas es la que sigue a 
continuación: 
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Figura 8. Estructura general de los mapas 

A continuación se estudiara detenidamente la estructura de los mencionados mapas: 

• Numero de filas y columnas: describe la dimensión de la matriz de celdas.  

• Escala: tamaño en metros de la  celda (son cuadradas)  

• Centro: coordenadas UTM (Universal Transverse Mercator) del centro del 
mapa. Como punto de referencia de una celda se considera la esquina inferior 
izquierda de ésta.  Para determinar la celda central, es necesario hacer 
distinción para los casos en los que el número de filas o columnas sea par o 
impar, para ello: 

Siendo ሺ݅௖,  ௖݆) los índices de la celda central del mapa, y llamando ܵே௠ଵ y ܵே௠ଶ al 
número de filas y columnas del mapa, se pueden presentar los siguientes casos: 

Que ܵே௠ଵ sea un número par. La celda central estará en la fila ݅௖ ൌ ௦ಿ೘భ
ଶ

൅ 1. 

Que ܵே௠ଵ sea impar. La celda central estará en la fila ݅௖ ൌ ௌಿ೘భାଵ
ଶ

. 

Así  tenemos los siguientes ejemplos:     

Mapa

Nº filas

Nº columnas

Escala

Centro

Celdas

Confianza

Ocupación

Altura

Gradiente en X

Gradiente en Y

Calidad de la comunicación

Calidad del GPS
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Figura 9. Ejemplos de situación del centro del mapa 

Como ejemplo para ilustrar la idea se puede observar a continuación una matriz de 6 
filas y 4 columnas con el centro situado en la celda (3,3). 

 

 

 

 

 

 

 

 

 

 

 

• Capas: en los siguientes apartados se hará una extensa descripción de la 
funcionalidad de cada capa. 

 

3,1  3,2 3,3 3,4

4,1  4,2 4,3 4,4

5,1  5,2  5,3  5,4 

1,1  1,2 1,3 1,4

2,1  2,2 2,3 2,4

6,1  6,2  6,3  6,4 

Centro 
del 

Mapa 

X

Y

Figura 10. Sistemas de referencia asociados al mapa 
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3.2. CONVERSIÓN DE COORDENADAS A CELDA EN EL MAPA 

De forma general, y sin tener en cuenta el tipo de mapa, se utiliza un sencillo algoritmo 
para hacer corresponder a  cada punto en su correspondiente celda del mapa. Aunque 
este proceso será detallado en los apartados dedicados a los algoritmos, para la 
correcta comprensión del funcionamiento de los mapas es necesario saber algún 
detalle sobre este proceso.  

Considerando un punto del mapa (xp,yp) y un mapa definido por el centro cuya posición 
es (x0,y0), y el tamaño de la celda defino por el parámetro “escala”, las distancias al 
centro vendrían definidas de la siguiente forma: 

ݔ∆ ൌ ௣ݔ െ  ௢ (11)ݔ

ݕ∆ ൌ ௣ݕ െ  ௢ (12)ݕ

Los índices de la matriz de celdas “i, j”  correspondiente a las distancias (∆ݕ∆ ,ݔሻ son: 

݆ ൌ X୭ ൅  int ൬
ݔ∆

݈ܽܽܿݏ݁
൰ ݔ∆׊ ൐ 0 (13) 

݆ ൌ X୭ ൅  int ൬
ݔ∆

݈ܽܽܿݏ݁
െ 1൰ ݔ∆׊ ൏ 0 (14) 

݅ ൌ Y୭ ൅  int ൬
ݕ∆

݈ܽܽܿݏ݁
൰ ݕ∆׊ ൐ 0 (15) 

݅ ൌ Y୭ ൅  int ൬
ݕ∆

݈ܽܽܿݏ݁
൅ 1൰ ݕ∆׊ ൐ 0 (16) 

 

3.3. ESTRUCTURA MULTICAPA DE CELDAS  

A continuación se describen la información correspondiente a las diferentes capas del 
mapa de celdas. 
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Es importante considerar que el algoritmo que se ha desarrollado puede funcionar de 
forma robusta, partiendo de una información inicial imprecisa o incompleta o bien sin 
contar con ningún tipo de información de partida. 

3.3.1. Altura 

Uno de los objetivos principales de la reconstrucción del terreno es obtener una 
representación lo más real posible del terreno y de los obstáculos presentes en él. Al 
tratarse de un  en sistema multi-robot, todos ellos colaboran de una forma 
descentralizada o centralizada en la composición de un mapa global que incluye la 
fusión de la información que proviene de todos los robots participantes en la 
simulación (que han tenido capacidad de comunicarse con los demás o con el puesto 
central). 

Por ello, cada robot se ocupa de actualizar el área del mapa correspondiente a la zona 
por la que transita, compartiendo las actualizaciones realizadas para un conocimiento 
común de todos los robots.  

La reconstrucción de las elevaciones y depresiones del terreno es parte fundamental 
del proyecto, siendo datos de partida para el cálculo posterior de los gradientes y con 
ellos el nivel de ocupación o de accesibilidad del terreno. No se hace ninguna 
distinción entre terreno y otros obstáculos presentes como edificios, estructuras, 
vehículos, otros robots, etc. 

Cada celda del mapa tiene asociado un valor numérico de la altura, que corresponderá 
básicamente con la altura media de todos los puntos observados en el interior de ella, 
ponderando dicha información con la estimación de la precisión en la observación de 
dicho punto de colisión.  

Como ejemplo se puede observar el mapa que viene a continuacion, resultado de la 
reconstruccion de un pequeño numero de celdas en alta resolucion: 
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Figura 11. Reconstrucción de la altura de un terreno 

En principio, el tipo de dato almacenado en cada celda es un número en coma flotante, 
de tal forma que es válido para valores reales de las alturas. Estas alturas son 
calculadas siempre en su valor absoluto, utilizando para ello el sistema fijo de 
referencia, es decir, tanto los mapas de alta resolución locales del robot como los 
mapas de baja resolución global tienen la misma referencia en cuanto a orientación y 
origen. 

3.3.2. Gradientes 

Las capas de gradientes tienen como objeto almacenar la estimación de las 
pendientes del terreno para cada celda según orientaciones  de los ejes principales X 
e Y, Los gradientes son calculados siempre respecto a ejes fijos. Así, el gradiente 
según X mide la variación de la altura según avanzamos en el sentido marcado por el 
eje X fijo. En esta capa se almacena el valor de la tangente del ángulo que forma la 
superficie con la horizontal.  

Es importante hacer notar que el gradiente es calculado utilizando para ello las alturas 
de los puntos de colisión que se corresponden  a la misma celda, es decir, no se 
realiza un gradiente entre celdas adyacentes, sino en el interior de la misma.  
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Aunque en general  los resultados no deben variar demasiado, se ha elegido  esta 
forma de actuar por ser más precisa ya que representa el gradiente justo en la celda 
en la que se produce el cambio de altura, y si se hiciera un gradiente entre celdas, 
este se encontraría algo desplazado respecto de la variación de altura producida. 

Como ejemplo de la capa de gradientes se puede observar la siguiente figura que 
ilustra los gradientes teóricos de un terreno en un mapa de baja resolución. Estos 
gradientes han sido calculados por el método de gradientes por filas y columnas que 
ya se explicará en el apartado correspondiente. 

 

Figura 12. Reconstrucción de los gradientes de un terreno 

 

3.3.3. Confianza 

La capa de confianza se utiliza para tener una medida de lo fiables que son los datos 
almacenados en  cada celda. Puesto que la reconstrucción se realiza a partir de las 
medidas de distancias obtenidas con un láser de barrido horizontal y vertical con 
incrementos de paso muy pequeños, se obtienen un gran número de puntos de 
colisión. 

Cada punto de colisión es localizado en el mapa y asignado a su correspondiente  
celda, es posible por lo tanto que haya celdas que recojan un gran número de puntos 
de colisión y otras con un número pequeño de puntos, o incluso ningún impacto.  
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De esta forma, con la confianza solo se registra la información proporcionada por los 
puntos donde el láser ha impactado, ignorando el resto de puntos por donde el láser 
ha “sobrevolado”.  

Otro efecto a considerar es que para una misma celda, puede ocurrir que los puntos 
estén muy juntos en una pequeña zona, o que por el contrario estén separados 
ocupando gran cantidad de la superficie de la misma.  

 

 

 

 

 

 

Es lógico plantearse qué aporta más información, si unas celdas donde el número de 
puntos sea reducido pero su dispersión sea grande como puede ocurrir en las celdas 
(1,2) y (2,3) de la Figura 13  si por el contrario aporta más información la situación de 
la celda (1,1) donde los puntos no presentan demasiada dispersión pero existe gran 
cantidad de puntos de impacto. 

Por ese motivo, además del número de puntos de impacto sobre una celda hay que 
tener en cuenta la dispersión de esos puntos, así surgieron durante el desarrollo del 
software dos tipos de algoritmos que fueron implementados: 

• Confianza basada en el número de puntos de impacto 

• Confianza basada en la dispersión de los puntos de impacto. 

De estos dos tipos de algoritmos investigados que se desarrollaran en apartados 
posteriores, el segundo de ellos resultó ser más eficaz y fue el elegido para la 
implementación definitiva. 

Los valores numéricos utilizados para medir la confianza son valores reales en el 
intervalo [0,1], de tal forma que se representa el desconocimiento absoluto del terreno 
con el valor de confianza 0, y el conocimiento suficiente con el valor 1, si bien 
internamente tiene una representación de niveles de 8 bits para lograr una mejor 
compactación de la información. 

   

   

   

Figura 13. Efecto de la dispersión de los puntos de impacto 
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Las diversas misiones del proyecto NM-RS pueden implicar distintos niveles de 
conocimiento previo del terreno. Esto determina que la confianza inicial de los mapas 
puede ser variable pero con alta probabilidad será muy baja al inicio puesto que se 
considera que la información inicial de los mapas es muy pobre en comparación a la 
obtenida por el robot en la exploración. También existirán misiones donde la confianza 
inicial sobre el terreno sea totalmente nula, o simplemente no exista ninguna 
información, en esos casos se asignará el valor 0. 

A medida que el robot progresa en la exploración del entorno y va recogiendo 
información sobre los puntos de impacto del láser, la confianza de cada celda va 
aumentando. Aunque como ya se explicará en la sección de algoritmos, cuando se 
produce un cambio en las medidas del terreno respecto a la información que había 
antes habrá momentos en los que la confianza disminuya. 

A continuación se detalla el nivel de confianza adquirido durante el recorrido de una 
trayectoria de muestra por el robot. Debido a las limitaciones de simulación se ha 
tratado de hacer un recorrido a través del terreno poniendo especial detalle en las 
zonas más interesantes del mismo en cuanto al nivel de relieve se refiere y dejando 
otras zonas de menor importancia más carentes de información. Para ello se han 
establecido puntos para la posición del robot mas juntos cuanto mayor es el nivel de 
detalle deseado y mas separados para cuando este nivel de detalle es menor.  

 

Figura 14. Mapa global con la trayectoria seguida por el robot 
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Figura 15. Reconstrucción global de la confianza 

 

En rojo se visualiza las zonas de mayor confianza, mientras que en azul son las zonas 
más carentes de información.  

3.3.4. Ocupación 

El grado de ocupación de un terreno se define en relación al robot que transita por él y 
toma en consideración la capacidad del robot de moverse por superficies inclinadas. Si 
la pendiente es superior a la tolerada por las capacidades mecánicas del robot, se 
considerará el terreno como ocupado y si por el contrario el valor absoluto de la 
pendiente es admisible para el robot, se tomará como nivel de ocupación un valor 
numérico que subirá linealmente con el valor absoluto de la pendiente.  

Si inicialmente se posee conocimiento previo de las alturas del terreno y por tanto de 
los gradientes del mismo, se podrán inferir los niveles de ocupación para cada celda 
de forma inmediata. 

Este nivel de ocupación se utilizará en otros módulos del proyecto para planificar el 
camino que puede tomar el robot en su tránsito de un punto a otro, teniendo en cuenta 
de esa forma la facilidad de paso por cada celda. 
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Figura 16. Reconstrucción global del grado de ocupación 

 

En la Figura 16 se observa como visualizando únicamente el nivel de ocupación como 
libre u ocupado, tenemos las zonas en rojo que representan áreas ocupadas o zonas 
por donde el robot no puede desplazarse. Mientras que en azul se aprecia el terreno 
libre o terreno sin información. 

3.3.5. Calidad GPS y calidad de la comunicación 

El nivel de calidad del GPS determina varios parámetros del comportamiento del robot, 
como la conveniencia de realizar la reconstrucción o no realizarla, así como de la 
necesidad de ejecutar el sistema de SLAM.  

Se han definido por requerimientos del proyecto tres niveles de comunicaciones GPS, 
que son, nivel 0 o ausencia de señal, nivel 1 o GPS no diferencial, y nivel 2 o GPS en 
modo diferencial. Estos niveles implican los siguientes comportamientos: 

• Nivel 0: no se realiza la reconstrucción puesto que no se tiene información 
fiable para realizarla. Se activa el módulo de SLAM para proceder a la 
localización aproximada del robot. 
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• Niveles 1 y 2: en esta primera versión del software no se hacen diferencias 
entre ambos niveles y se procede a realizar la reconstrucción para ambos y a 
la no ejecución del módulo de SLAM. 

 

El  nivel de comunicaciones va asociado a la capacidad de interconexión de unos 
robots con otros o con una estación base. Este valor al igual que la calidad de 
recepción de la señal GPS es almacenado exclusivamente en la celda en la que se 
encuentra el robot en cada momento durante la ejecución de la misión. 

3.4. DATOS DE PARTIDA 

3.4.1. Mapa inicial del terreno en baja resolución 
(LowResMapGlobal) 

Como se ha comentado anteriormente, en este mapa se almacena la información 
inicial y es en el que se realiza la fusión de la información procedente de todos los 
robots para ser transmitida de nuevo a todos los robots con la nueva información 
actualizada. 

Como información de partida se dispone de un conocimiento previo del terreno sobre 
el cual se va a desarrollar la reconstrucción en forma de un mapa  en baja resolución, 
con unas dimensiones y escala conocidas y determinadas en principio por los 
requisitos de un determinado ensayo que se vaya a realizar. Se llamará de aquí en 
adelante LowResMapGlobal. 

La información previa contenida en este mapa puede ser nula y estar el mapa vacio o 
por el contrario, disponer de una información inicial cuya calidad  no tiene porque ser 
muy alta,  por lo que se asociará al mapa inicial un nivel de confianza bajo (ej. C=1/16 
sobre 1).  

3.4.2. Dimensiones y características del robot 

Las dimensiones de los robots vienen impuestas según determinados modelos que 
van a ser usados para las pruebas. No obstante, éstos son heterogéneos en su 
tamaño y sistema de locomoción, por lo que cada robot generará mapas de alta 
resolución con tamaño de la rejilla adaptado al tamaño del propio robot. 

3.4.2.1. Características de los  sensores 

Como ya se ha comentado, este software esta realizado para robots equipados con 
sensor láser utilizados para medir distancias punto a punto y una integración de 
sensores GPS, inerciales fusionados con un filtro Kalman para obtener la primera 
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aproximación de la posición. Esta sección revisa las principales características del 
paquete de sensores requeridos para la navegación autónoma considerando algunos 
aspectos físicos (valores típicos) como el consumo de potencia, el tamaño, peso para 
poder tener una visión real del problema y de la solución considerada. Todos estos 
aspectos han tenido que ser simulados en MRS,  y parte de ellos en Matlab. Los 
aspectos más importantes han sido la localización de los sensores respecto al centro 
de masas del robot, los ángulos barrido vertical y horizontal así como la resolución 
angular y resolución en la medida de la distancia del láser. A continuación se verá un 
ejemplo de valores típicos de sistemas comerciales y se explicará en profundidad las 
implicaciones de cada parámetro dentro de la simulación. 

Sensores  para SWR  Integración 
GPS/IMU/MAG 

Láser  Ultrasonidos 
(valores unitarios) 

Potencia 
20 w  20 w  300 mw  

Tamaño 
800 ܿ݉ଷ  1000 ܿ݉ଷ  ‐ 

Peso  1 kg  6 kg  25 g  

Rango 

120 º/s 

100 m 
Vertical: 
+‐ 45º paso 1 º 
Horizontal: 
+‐90º / paso 1º 

0.5 – 10 m 

Errores 
1º Roll & Pitch 
2º Yaw 

± 0.02m 

 

0.1 m 

 

Como parámetros esenciales para realizar transformaciones de cambio de base se 
tiene que las dimensiones del láser y su posición relativa respecto el centro de masas 
del robot juegan un rol fundamental, ya que es necesario conocer esta información 
para convertir las coordenadas de un punto visto desde el sistema móvil ligado al láser 
a el sistema fijo ligado a un punto del mapa global. Así como el peso no es un 
parámetro de importancia en las simulaciones con Matlab puesto que no se han tenido 
en cuenta efectos dinámicos. 

Otros parámetros fundamentales son los rangos de barrido vertical y horizontal que 
unidos a la resolución o el paso angular entre dos medidas consecutivas determinan 
las dimensiones de la matriz de salida del láser. Dicha matriz es uno de los elementos 
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más importantes en todo el desarrollo de este trabajo y se le dedicará un apartado 
específico. En cada ciclo de medidas, se obtiene como salida una matriz rectangular 
cuyos valores son las distancias del láser al punto de colisión para cada rayo 
caracterizado por los ángulos de barrido horizontal y vertical. De esta forma se obtiene 
una imagen reconocible del terreno detectado como si se visionara una imagen en un 
televisor. Las dimensiones de esta matriz llamando α al ángulo de barrido horizontal, σ 
al vertical y rh  y rv  a las resoluciones horizontal y vertical son: 

݊º ݂݈݅ܽݏ ൌ
ሺߪ௠௔௫ െ ௠௜௡ሻߪ

௩ݎ
  ( 17) 

݊º ܿݏܽ݊݉ݑ݈݋ ൌ
ሺߙ௠௔௫ െ ௠௜௡ሻߙ

௛ݎ
  ( 18) 

Donde el subíndice h indica horizontal y el subíndice v indica vertical. 

3.4.2.2. Emplazamiento y orientación del robot 

Se conoce a priori el estado inicial del robot, es decir sus coordenadas absolutas 
respecto al origen del mapa fijo ( ࢄ૚, ࢅ૚, ࢆ૚)  y la orientación del robot respecto al ejes 
fijos dados por los ángulos de Euler: 

• Alabeo o Roll (࣐), ángulo que representa un giro respecto al eje  ଵܺ fijo. 

• Cabeceo o Pitch(θ), ángulo que representa un giro respecto al eje ଵܻ fijo. 

• Guiñada o Yaw(ψ), ángulo que representa un giro respecto al eje  ܼଵ fijo. 

Inicialmente se partirá siempre con el robot situado en el centro del mapa local. 

3.4.3. Aspecto del mapa local  

Para realizar la reconstrucción se utilizará  un mapa local que es el mapa que utiliza el 
robot en tiempo real para almacenar los cálculos realizados con  las medidas tomadas 
por el láser. Este mapa denominado HighResMap es un mapa local en alta resolución. 
Las dimensiones, y escala serán parámetros que se elegirán previamente según los 
requisitos de cada ensayo. Para las pruebas en Matlab se ha venido utilizando unos 
valores de escala de 1 m. y con un número de filas y columnas de 240. El cambio de 
estos parámetros influye enormemente en la apreciación de los resultados, sobre todo 
de forma gráfica, puesto que cuanto más difieran las dimensiones del local respecto 
del global más difícil es apreciar los cambios en este al reconstruir. Por ese motivo se 
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eligieron estos valores, donde se hace primar más la visibilidad de los resultados que 
el realismo de las dimensiones consideradas. En otros casos más realistas es 
probable que la dimensión del mapa global sea mayor. 

Este mapa aparecerá vacio inicialmente y comenzará a tener contenido a partir de la 
primera toma de datos del láser.  

3.4.4. Trayectoria del robot 

Se establecerá un camino que deberá seguir el robot por el mapa. Ese camino vendrá 
dado por una serie de puntos designados según sus coordenadas (x, y) sobre el mapa 
global, por lo que para la simulación en Matlab será un camino discreto basado en 
puntos. En cada lectura del láser se irá obteniendo la nueva posición del robot y las 
medidas del láser se calcularán en base a esa nueva posición. 

A continuación se puede observar un ejemplo de una trayectoria elegida para el robot. 
En este caso el mapa global consta de una serie de montañas y de valles que el robot 
va bordeando. Se puede observar algún salto brusco en los movimientos del robot, 
este tipo de saltos solo tienen como finalidad el ahorro de tiempo de cálculo por zonas 
donde no se ha requerido excesivo detalle.  

 

Figura 17. Mapa global con la trayectoria del robot 
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3.4.5. Posición del mapa local en el interior del mapa global 

Se denominará C_local_global a la posición en cada instante del centro del mapa 
local (HighResMap) respecto al mapa global LowResMapGlobal. Llamaremos ciclo al 
proceso completo de reconstrucción y fusión de cada matriz de medidas del láser. Al 
inicio de cada ciclo se comprueba que el alcance del láser del robot está comprendido 
en el interior del mapa local y que no existan zonas de reconocimiento del láser que 
pudieran quedar fuera. Si el alcance del láser esta dentro del rango del mapa local, no 
se desplaza el C_local_global, en caso contrario si se desplazaría. 

Debido al movimiento del robot por el terreno, esta comprobación se realiza en cada 
nuevo punto de desplazamiento. Al ser la simulación a base de desplazamientos 
discretos podría ocurrir que en un punto el láser se encontrará correctamente situado 
en el interior de los límites del HighResMap  y en el punto siguiente no ocurriera lo 
mismo. 

   

Figura 18. Características principales del HRM y LRM 

Robot

C_local_global

Centro del mapa fijo 

Mapa móvil 
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Como se puede  observar en la figura 2 la situación es correcta puesto que el rango de 
alcance del láser se encuentra en el interior del mapa local, en esta situación no se 
desplazará  C_local_global. Distinto es el caso de la figura 3 donde el láser sale del 
alcance del mapa local. En esta situación es preciso desplazar C_local_global y con 
ello el mapa local para que el láser este contenido en el mapa. Más adelante se 
explicará en detalle el proceso de desplazamiento de dicho mapa 

3.4.6. Sistemas de referencia utilizados 

Para la navegación autónoma y el reconocimiento del terreno se han usado 3 sistemas 
de coordenadas fundamentales. En primer lugar se encuentra el sistema fijo que es un 
sistema con origen en un punto determinado del mapa global, un punto determinado 
previamente. Por otro lado, y como sistemas de referencia móviles se tienen el 
sistema de referencia ligado al centro de masas del robot y solidario con él y el 
sistema de referencia ligado al láser y también solidario con él. Denominaremos 
sistema 1 al sistema fijo, sistema 2 al sistema móvil ligado al centro de masas del 
robot y sistema 3 al sistema ligado al láser. De esta forma tenemos: 

Figura 19. Desplazamiento del HRM 

Mapa móvil inicial Mapa móvil desplazado 
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4. ALGORITMOS DE RECONSTRUCCIÓN  

4.1. Introducción 

Se utiliza el término reconstrucción para indicar el procedimiento desarrollado para la 
obtención de un modelo digital del entorno, que es uno de los objetivos principales de 
este proyecto. Dicha reconstrucción del terreno explorado por el robot, mejora la 
información de la que se ocasionalmente se dispone a priori. 

 Para realizar este proceso se parte únicamente de la información obtenida por el 
láser, en forma de una matriz de medidas. A partir de estos datos y de la información 
sobre los ángulos de barrido horizontal y vertical que el láser proporciona en cada 
momento, se obtienen las coordenadas de los puntos en los que el láser colisiona 
referenciado al sistema 3 (Ver apartado anterior). 

Posteriormente,  tras un cambio de base se obtiene dicho punto de impacto del láser 
visto desde el sistema 1 (Ver apartado anterior). De esta forma, se podrá almacenar 
en la matriz del mapa reconstruido la información obtenida y estimar tanto la 
información global como la local.  

Para la correcta localización en un mapa global geo-referenciado es necesario 
lógicamente conocer con precisión no sólo la posición del robot en éste en el momento 
de la adquisición de los datos sino también su actitud. 

En términos prácticos, y dado que la estimación de la actitud tiene una gran 
disponibilidad (solo cuando el sensor inercial ser avería no proporciona estimaciones) 
se puede geo-referenciar cuando el GPS proporciona una información precisa, lo que 
ocurre cuando se dispone de una estimación de la posición bien en modo individual o 
diferencial (modos 1 y 2) 

 En caso de no disponer de una estimación de posición por parte del GPS, se 
procederá a la localización por diversos métodos de SLAM que se comentarán en el 
capítulo (pon aquí el número de capítulo). 

4.2. Esquema general del proceso de reconstrucción 

Como ya se ha comentado anteriormente el módulo M45 es llamado cada vez que se 
dispone de  información nueva procedente del láser. La nueva información con la que 
se realiza la llamada al algoritmo, permite realizar los cálculos necesarios para 
reconstruir todos los puntos de impacto del láser. Se utiliza la metodología siguiente 
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Figura 22. Entradas y salidas del módulo 45 (Mapeado) 

 

4.2.1. Estimación del estado del robot 

Para la obtención de la variable r_RobotStateEstimate de la que se obtiene la 
información de partida referente a la primera estimación de la posición y la orientación 
del robot se utilizan una serie de filtros de Kalman en cascada que fusionaran la 
información de los sensores inerciales, GPS y sistema de odometría del vehículo,  
como muestra la Figura 23 . 

   

DATOS DE ENTRADA 
 

• r_RobotStateEstimate 
• Lrf3DMeasure 
• LowResMapGlobal 
• Sensors 
• RobotData 
• Otros 

Módulo M45

DATOS DE SALIDA 
• LowResMap  
• HighResMap,  
• r_RobotSlamEstimate 
• Otros 
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Figura 23. Esquema de la fusión sensorial y estimación del estado del robot. 

 

Debido a que  existen diferentes tipos de robots dentro del proyecto, cada uno utiliza 
diferentes modelos de odometría con sus correspondientes parámetros, de forma que 
se genera una estimación del incremento de la posición por módulos anteriores, de tal 
forma que pueda ser utilizada en la fusión de datos de una forma homogénea con 
independencia del vehículo utilizado. 

Existe también un módulo encargado de fusionar la información proveniente del GPS y 
del sensor inercial para proporcionar una solución completa sobre posición, velocidad 
y orientación.  

 

M45 

GPS‐INS 
(EKF)  ODOMETRIA

EKF

r_RobotStateEstima

SLAM

  EKF

R_SlamEstimate 

GPS Quality 

r_RobotSlamEstima
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Como una de las más importantes contribuciones de este proyecto, se proporciona 
una estimación absoluta de la posición del robot utilizando la información del mapa 
previamente obtenido y las medidas del láser. Esta medida se introduce como 
estimación del estado en otro filtro de Kalman cuando no se dispone de estimación en 
la posición mediante GPS. Esta salida se utiliza como entrada como estimación del 
primer filtro de Kalman de la cascada. 

 

4.3. ESQUEMA GENERAL DEL MÓDULO 

El algoritmo de reconstrucción dispone de una etapa previa de configuración según 
una serie de parámetros como son el rango de movimiento horizontal y vertical del 
láser, la resolución de dicho movimiento y el alcance del láser.  

También se procede a la inicialización del mapa de alta resolución a partir de las 
características que éste debe poseer, la posición del robot, el mapa global y la 
información sobre los sensores y dimensiones características del robot. Estos detalles 
se explicarán más detalladamente en apartados posteriores.  

 

Una vez inicializados los mapas y las variables de forma conveniente, se procede a 
comprobar si existe señal GPS. Este es un punto fundamental en el mecanismo de 
operación de todo el módulo, puesto que determina si se va a proceder a la 
reconstrucción o si por el contrario se va a proceder a usar el módulo de Slam para 
obtener una mejor aproximación de la posición. Si se dispone de señal GPS se 
procederá a reconstruir utilizando la estimación de la posición, por el contrario, si no se 
dispone de señal GPS, se ejecutará el módulo Slam, que en la mayoría de los casos 
proveerá de una estimación de la posición mejorada. 

 

Como herramienta de ayuda al desarrollo del algoritmo, se ha diseñado un entorno 
utilizando Matlab que permite la creación de entornos mediante la utilización de una 
superficie plana y añadir elementos positivos o negativos (montañas o valles) así como 
una simulación de un sensor láser que se puede orientar y situar de forma arbitraria en 
dicho entorno y éste proporciona la simulación del sensor real proporcionando una 
matriz de puntos de colisión según los parámetros de entrada deseados (rangos, 
incrementos, alcances y error en la estimación) 
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En primera instancia,  se genera un mapa local auxiliar, utilizando para ello 
únicamente la información proveniente de una lectura del láser. Ese mapa auxiliar se 
fundirá posteriormente con la última estimación del mapa local de alta resolución 
(HighResMap) dando como resultado un nuevo mapa de alta resolución.  

Dicho nuevo mapa  (adaptado en sus dimensiones) se fusiona posteriormente con la 
última versión disponible de forma local en el robot del  mapa global 
(LowResMapGlobal) , produciendo con ello la salida deseada del módulo de mapeado. 

A continuación se describe con detalle cada fase del algoritmo utilizado. 

 
 

 
 

 
SLM 

Traslado del centro del 
mapa móvil  
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Figura 24. Proceso de reconstrucción y mapeado. 

Inicio , inicializacion de variables

Comprobacion del 
rango del laser

Comprobacion de la 
posicion del mapa 

movil

Creacion de HighResMap a partir de LowResMapGlobal

¿Posicion 
conocida? 

¿GPS operativo?

Reconstruccion del terreno en alta 
resolucion. Obtencion de 

aux_MapCell_local

Fusión con HighResMap

Fusion del nuevo HighResMap con 
LowResMapGlobal

Fin del ciclo. Siguiente lectura del laser.

Simulación del 
láser 

Incorrecto

Traslado del centro 
del mapa móvil 

Traslado del centro 
del mapa móvil 

Incorrecto

No
SLAM 
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4.4. PROCESO:  COMPROBACIÓN DEL RANGO DEL LÁSER 

Como se ha descrito anteriormente, el sistema NMRS trabaja con dos tipos de mapa; 
el local de alta resolución (de una extensión pequeña, de orden de 2 veces el alcance 
del láser) y mapas de baja resolución (de la misma extensión que el entorno de 
simulación). 

A su vez, existen mapas de baja resolución globales (que es el resultado de la fusión 
de la información de todos los robots existentes en la simulación) y mapas de baja 
resolución locales (que es la versión local de cada robot del mapa global modificado 
en las aportaciones realizadas a la reconstrucción por parte de dicho robot). La 
diferencia entre los mapas locales y globales será tanto mayor como mayor sea el 
tiempo transcurrido desde la transmisión de los datos de los robots y la fusión de la 
información procedente de varios de ellos y la retransmisión de nuevo a los robots 
participantes. 

Con objeto de establecer la porción del mapa de baja resolución que se corresponde 
con la de alta resolución se realiza una serie de comprobaciones con el objeto de 
desplazar correctamente el mapa de alta resolución sobre el de baja.  

Este desplazamiento del mapa de alta resolución debe realizarse cuando el 
desplazamiento del robot en el mapa de alta resolución motiva que la zona de alcance 
del láser se sale de éste. Esto puede producirse de forma habitual si las dimensiones 
que se eligen para el mapa local son pequeñas. Por ese motivo se produce un 
desplazamiento casi continuo del mapa local sobre el mapa global con una grabación 
y lectura de datos también continua. Para solucionar este problema se han diseñado 
unas comprobaciones previas que hay que realizar siempre. 
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Figura 25. Proceso para calcular el desplazamiento del mapa de Alta Resolución 

Al iniciar la simulación se parte con el punto central del mapa de alta resolución 
situado sobre el robot, por ello no existirá ningún problema relacionado con  el hecho 
de que el punto de impacto del láser no se encuentre dentro del mapa. Pero en el 
movimiento del robot se debe comprobar periódicamente que el alcance máximo del 
láser se encuentra dentro de los límites del mapa.  

Como se puede observar en el esquema anterior, se trata por tanto de calcular la 
celda que ocupa el robot en el mapa local y ver si la circunferencia correspondiente a 
todo el alcance de láser está contenida en el mapa. 

  

Dato de partida: nueva 
posicion inicial del robot

Cálculo de la celda 
correspondiente en el mapa de 

alta resolución

¿Esta la celda dentro 
de unos rangos?

Proceso: 
comprobacion de la 
posicion del HRM

Nueva Posición del centro 
del mapa: posición actual 
del robot 

No 
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Figura 26. Diferentes situaciones del robot dentro del Mapa de alta resolución. 

Como se puede observar en la Figura 26 (izq.), el rango de alcance del láser 
representado mediante un circulo, se encuentra dentro del área del mapa local, 
mientras que el la figura de la derecha, ocurre el caso contrario. Mientras que en el 
primer caso la comprobación seria correcta y no daría lugar a ninguna acción, en el 
segundo caso habría que recolocar el centro del mapa local de tal forma que ocupe 
ahora la posición actual del robot, tal y como indica la Figura 27: 

 

 

 

 

 

 

 

          

Figura 27. Diferentes situaciones del robot dentro del mapa de Alta resolución. 

 

De esta forma la posición actual del robot vuelve a coincidir con el centro del mapa 
local. 
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4.5. PROCESO:   COMPROBACIÓN DE LA POSICIÓN DEL MAPA MÓVIL 

 

Figura 28. Esquema del proceso de comprobación de la posición del mapa móvil 

Puede ocurrir que debido al movimiento del robot, o debido a la traslación efectuada 
en el proceso anterior el mapa local  se encuentre en el extremo del mapa global. En 
ese caso se debe impedir que el sistema intente crear un nuevo HRM que se salga de 
los límites permitidos por el LRM. El criterio utilizado en estos casos consiste en 
superponer únicamente hasta los límites de la zona permitida aunque el robot no se 
encuentre centrado respecto al nuevo mapa de alta resolución creado. 

 

 

 

 

 

 

 

Figura 29. Situación relativa del mapa de alta resolución sobre el de baja. 

Dato de partida: nueva 
posicion inicial del robot

¿HRM dentro de unos limites del 
LRM?

Fin

Nueva posición del 
HRM   HRM en el 
limite del LRM 

No 
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Como se puede observar en la Figura 29, el mapa local se escapa de los límites 
permitidos. A esta situación se podría llegar únicamente cuando al desplazar el HRM 
mediante el proceso de comprobación del rango del láser, se diese un salto brusco en 
la posición del nuevo mapa, invadiendo la zona prohibida. Por ese motivo se efectúan 
los dos procesos de forma consecutiva, primero se procede a comprobar el rango del 
láser, se hacen los cambios oportunos y luego se comprueba que el HRM se 
encuentre en el interior del LRM. 

A continuación (Figura 30) se muestra un caso particular de una situación que se 
podría dar en alguna ocasión. Se trata de medidas del láser que salen fuera del LRM. 
Esta situación puede darse si no se impide que el robot pase por cerca del borde del 
LRM. Si esto ocurre, es probable que el alcance del láser quede fuera de dicho mapa. 
En este caso se corrige la posición del centro del HRM, desplazándolo hacia la 
izquierda en este caso  para que tenga cabida en el mapa global. Al realizar esta 
operación podría ocurrir que el alcance del láser estuviera ahora fuera del mapa local. 
En este caso se ignoraran las medidas que cumplan esa condición.  

 

 

 

 

 

 

 

 

 

Figura 30. Situación relativa del mapa de alta  resolución sobre el de baja. 

Una vez realizados los dos procesos anteriores se obtiene una salida que se 
denominará ܥு ൌ ሺܺு, ுܻሻ y que corresponde a las coordenadas del centro del HRM 
que se han ido calculando en base a todas las restricciones antes mencionadas. 

El proceso de captura de datos desde LRM hacia HRM y el volcado de los mismos en 
sentido contrario será explicado detalladamente en apartados posteriores. 
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4.6. Proceso : Creación del HRM inicial a partir de LRM 

Teniendo en cuenta que el tamaño de una celda de un mapa de baja resolución 
siempre debe ser múltiplo del tamaño de una celda de un mapa de alta resolución, los 
algoritmos para situar relativamente ambos mapas resultan sencillos. Así, una vez 
determinado el centro del HRM como se ha explicado en apartados anteriores, se 
calcularán las  celdas del LRM que deben ser transferidas al mapa local. Para ello 
bastará con a partir de la cela del LRM correspondiente a la coordenada ࡴ࡯ ൌ
ሺࡴࢄ,  ሻ sumarla o restarla la mitad de la dimensión del HRM adaptada por medio deࡴࢅ
la escala, las formulas a utilizar son las siguientes: 

 

nൌ 
Escala LRM
Escala HRM

(22) 

࢕ࡵ ൌ ࢍࡵ  െ
࢒ࢇࢉ࢕࢒૚࢓ࡺ࢙

૛
൬

૚
࢔

൰ ൅ ૚ (23) 

ࢌࡵ ൌ ࢍࡵ  ൅
࢒ࢇࢉ࢕࢒૚࢓ࡺ࢙

૛
൬

૚
࢔

൰ (24) 

࢕ࡶ ൌ ࢍࡶ  െ
࢒ࢇࢉ࢕࢒૛࢓ࡺ࢙

૛
൬

૚
࢔

൰ (25) 

ࢌࡶ ൌ ࢍࡶ  ൅
࢒ࢇࢉ࢕࢒૛࢓ࡺ࢙

૛
൬

૚
࢔

൰ െ ૚ (26) 

 

Donde:  

 

 .௢: son la fila y columna iniciales respectivamente del mapa LRMܬ  ,௢ܫ •

  .௙: son la fila y columna finalesܬ  ,௙ܫ •

 .ுܥ ௚: son la fila y columna del LRM correspondientes aܬ ,௚ܫ •

 .ே௠ଶ೗೚೎ೌ೗ son el numero de filas y columnas del HRMݏ ே௠ଵ೗೚೎ೌ೗ yݏ •
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Como se puede observar en el ejemplo que viene a continuación en la Figura 31, se 
tiene un LRM de dimensiones 8 x 8 cuya celda central viene sombreada y su 
coordenada identificativa se indica mediante un circulo en su esquina característica. Si 
se desea situar un mapa de alta resolución cuyas dimensiones equivalentes al LRM 
son una cuadricula 4 x 4, al aplicar las ecuaciones anteriores resultaría: 

ሾܫ௚,  ܬ௚] = [4, 4] 

 [3, 3] = [௢ܬ  ,௢ܫ]

 [6, 5] = [௙ܬ  ,௙ܫ]

Lo que resulta en un mapa HRM también sombreado de las dimensiones deseadas (4 
x 4), cuyo centro sigue siendo ܥு. Pues bien, con esta metodología se calculan los 
índices de las celdas que delimitan el mapa de alta resolución dentro del LRM. Así, 
solo bastará a continuación copiar las celdas correspondientes en orden para crear un 
nuevo HRM. 

 
 
 

               

               

               

               

               

               

               

               

 

Figura 31. Creación del HRM inicial a partir del LRM 

 ௚ܫ

௚ܬ

 ௢ܫ

 ௢ܬ

 ௙ܫ

௙ܬ



UPM Enrique del Sol Acero 63 

Para calcular el número de celdas de LRM equivalentes a otro número de celdas de 
HRM basta considerar que: 

ࡹࡾࡴ ࢙ࢇࢊ࢒ࢋࢉ ºࡺ ൉ ࡹࡾࡴ ࢇ࢒ࢇࢉ࢙ࡱ
ൌ ࢙ࢋ࢚࢔ࢋ࢒ࢇ࢜࢏࢛ࢗࢋ ࡹࡾࡸ ࢙ࢇࢊ࢒ࢋࢉ ºࡺ ൉  (19) ࡹࡾࡸ ࢇ࢒ࢇࢉ࢙ࡱ

 

Por ello el número de celdas del HRM equivalentes a una del LRM es: 

ࡹࡾࡴ ࢙ࢇࢊ࢒ࢋࢉ ºࡺ ൌ
૚ כ ࢇ࢒ࢇࢉ࢙ࡱ ࡹࡾࡸ

ࢇ࢒ࢇࢉ࢙ࡱ ࡹࡾࡴ
(20) 

 

Hay que tener en cuenta que en el desplazamiento del HRM suele ocurrir que parte 
del nuevo mapa coincide con el mapa antiguo, por lo que esa información coincidente 
no se introducirá en el HRM sino que se conservará del estado anterior. Dado que 
cada paso de alta a baja resolución implica una pérdida de información, es 
conveniente realizar este paso el menor número de veces. Equivalentemente a esto, 
es conveniente también utilizar la información existente de alta y no sobrescribirla con 
la información que se posee en baja ya que esta será siempre de peor calidad. Se 
puede ver claramente con un ejemplo grafico: 

 
 
 
 
 
 
 
 
               
                  
 

 

 

 

Figura 32. Conservación de los datos del HRM en la adquisición de nueva información 
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Como se puede ver al desplazar el HRM la zona coincidente sombreada más oscuro 
en el dibujo se debe conservar y no se deben importar nuevos datos de baja en esa 
área puesto que se perdería calidad de la información que se posee. 

 

4.7. PROCESO: SIMULACIONES DEL TERRENO Y DEL LÁSER 

 

Como se ha comentado anteriormente, con objeto de facilitar la depuración del 
software en Matlab, se desarrollaron una serie de aplicaciones con el objeto de tener 
todos los procesos disponibles antes de pasar el código al Microsoft Robotics Studio. 
Por ello, dos aplicaciones básicas fueron necesarias; una de ellas crea un terreno 
virtual y con ello un Low Resolution Map y la otra simulan el impacto del haz de rayos 
láser sobre dicho terreno.  

Simulación del terreno 

Este programa crea un mapa formado por la intersección de un terreno plano con unos 
determinados números de paraboloides positivos y negativos. Todo ello parametrizado 
de forma que se puede elegir el numero de parábolas (Ver Figura 33). Aunque la 
localización de estas se produce de forma aleatoria en cada ejecución del software. 
También se pueden elegir las dimensiones totales del terreno. De esta forma se 
crearon numerosos mapas de prueba, mapas que vienen representados 
matemáticamente como una matriz cuyos valores reales representan la altura de cada 
celda. 

Este programa resulto ser de gran utilidad para las simulaciones sucesivas dado que 
se podían crear mapas con los elementos característicos deseados. 
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Simulación del láser 
 
Para la simulación del láser se desarrollaron una serie de funciones con objeto de 
calcular las intersecciones de los rayos lanzados según unos ángulos 
determinados con los elementos del entorno (paraboloides o suelo) dentro del 
alcance máximo del láser.  Con ello, se obtiene una serie de puntos (X, Y, Z) de 
colisión, donde la distancia de cada uno de los puntos de colisión  al punto de 
partida (láser), se corresponde con el valor medido por el mismo. 
 

 

Figura 34. Representación de puntos de colisión del láser. 

Figura 33. Ejemplo de entorno simulado con Matlab. 
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Como se puede observar en la Figura 34 el láser forma una semiesfera de puntos de 
impacto, aunque evidentemente donde el láser no impacta se lee el valor máximo 
correspondiente a su alcance máximo (típicamente 80 metros).  

4.8. CALCULO DE LAS COORDENADAS CARTESIANAS DE LOS 
PUNTOS DE IMPACTO 

En este apartado se va a describir el algoritmo para transformar la matriz de distancias 
entregada por el láser en los correspondientes puntos de colisión referenciados al 
sistema de coordenadas del mapa. 

En primer lugar se describe la estructura de la matriz D de distancias proporcionada 
por el láser, denominada Lrf3dMeasure.  

El sistema láser realiza dos barridos, uno horizontal que varía entre  (+α, -α)  y uno 
vertical que varía entre (+σ,-σ) según el siguiente criterio de signos. 

 

 

 

 

 

Figura 35. Criterio de signos en asignación de ángulos de barrido horizontal y vertical. 

Teniendo en cuenta que Lrf3dMeasure representa una imagen en la que el valor de 
pixel describe la distancia al punto de impacto, tiene que la fila superior de la matriz 
corresponde al ángulo de barrido vertical más negativo  y la fila inferior de la matriz 
corresponde al más positivo. Lo mismo se puede decir de la columna izquierda de la 
matriz que representaría el ángulo de barrido horizontal máximo mientras que la 
columna situada más a la derecha se representa el ángulo de barrido horizontal 
mínimo. De tal forma queda: 
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Lrf3dMeasure  = 

ெூேߪ ,ெ஺௑ߙ ெூேߪ ,ெூேߙ ………      

 

ெ஺௑ߪ ,ெ஺௑ߙ   ………. ெ஺௑ߪ ,ெூேߙ    

Figura 36. Variación de los barridos angulares vertical y horizontal en el 
interior de la matriz de medidas del laser. 
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Así, una vez que se posee la matriz con las medidas de las distancias a los puntos de 
colisión, se procede a recorrer dicha matriz elemento a elemento asociando a cada 
valor de distancia los correspondientes al ángulo α y σ según las siguientes 
expresiones: 

ࢻ ൌ ࢄ࡭ࡹࢻ  െ ሺ࢐ െ ૚ሻ כ ࡴࡾ (21) 

࣌ ൌ ࡺࡵࡹ࣌  ൅ ሺ࢏ െ ૚ሻ כ  (30) ࢂࡾ

Donde: 

 .son los angulos del láser según las referencias establecidas ߪ y ߙ •

 ெ஺௑ es el ángulo de apertura horizontal máximo correspondiente a la mitadߙ •
del ángulo total de barrido horizontal. 

 ெூே es el ángulo de apertura vertical minimo correspondiente a la mitad delߪ •
ángulo total de barrido vertical. 

• ݅ , ݆ son la fila y columna del elemento de la matriz del láser que se está 
procesando. 

,ܪܴ • ܴܸ son las resoluciones angulares horizontal y vertical. 

A continuación, se realiza la transformación de coordenadas esféricas a cartesianas 
según el sistema de referencia 3, centrado en la óptica del láser, según las siguientes 
expresiones: 

૜ࢄ ൌ ࢊ ሺെ࣌ሻܛܗ܋ ሻࢻሺܛܗ܋ (31) 

૜ࢅ ൌ ࢊ ሺെ࣌ሻܛܗ܋  ሻ (32)ࢻሺܖܑܛ

૜ࢆ ൌ ࢊ ܖܑܛ ሺെ࣌ሻ (33) 

Posteriormente, se debe pasar desde el sistema de referencia 3 o sistema del láser 
hasta el sistema fijo para representar cada punto de impacto respecto al sistema de 
coordenadas fijo. Para ello, se cuenta con la información de los ángulos de Euler del 
sistema móvil (2) respecto al fijo (1) (actitud del robot)  y se utiliza el cálculo matricial 
basado en transformaciones homogéneas. 
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En primer lugar se definen los ángulos de Euler que van a ser utilizados: 

• Roll (࣐), angulo que representa un giro respecto al eje ଵܺ fijo. 

• Pitch (θ), ángulo que representa un giro respecto al eje ଵܻ fijo. 

• Yaw (ψ), ángulo que representa un giro respecto al eje ܼଵ fijo. 

 
En segundo lugar se define el tipo de transformación utilizada: 

૚ ࢇ࢓ࢋ࢚࢙࢏࢙ ࢘࢕࢚ࢉࢋࢂ ൌ ૛ࢀ 
૚ כ ૛ࡾ

૚ כ ૜ࢀ
૛ כ ࢘࢕࢚ࢉࢋࢂ ࢇ࢓ࢋ࢚࢙࢏࢙ ૜ (34) 

 

Estas operaciones son debidas a que para pasar del sistema 2 al 3 es necesaria una 
simple translación. Sin embargo, para pasar del 2 al sistema de referencia del mapa es 
necesaria una rotación y una posterior translación. 

 
Estas operaciones en detalle serían: 
 

൮

૚ࢄ
૚ࢅ
૚ࢆ
૚

൲ ൌ ൮

૚ ૙ ૙
૙ ૚ ૙
 ૙ ૙ ૚
૙ ૙ ૙

૛ࢄ
૛ࢅ
૛ࢆ
૚

൲  כ  

൮

ሺૐሻ࡯  כ ሺીሻ࡯ ሺૐሻ࡯ כ ሺીሻࡿ כ ሺ૎ሻࡿ െ ሺૐሻࡿ כ ሺ૎ሻ࡯ ሺીሻࡿሺૐሻ࡯ כ ሺ૎ሻ࡯ ൅ ሺૐሻࡿ כ ሺ૎ሻࡿ
ሺૐሻࡿ כ ሺીሻ࡯ ሺૐሻࡿ כ ሺીሻࡿ כ ሺ૎ሻࡿ ൅ ሺૐሻ࡯ כ ሺ૎ሻ࡯ ሺૐሻࡿ כ ሺીሻࡿ כ ሺ૎ሻ࡯ െ ሺૐሻ࡯ כ ሺ૎ሻࡿ

െࡿሺીሻ ሺીሻ࡯ כ ሺ૎ ሻࡿ ሺીሻ࡯ כ ሺ૎ሻ࡯
૙ ૙ ૙

૙
૙
૙
૚

൲  (35) כ

൮

૚ ૙ ૙
૙ ૚ ૙
૙ ૙ ૚
૙ ૙ ૙

૜ࢄ
૜ࢅ
૜ࢆ
૚

൲  

 

Una vez aplicada esta transformación matricial, se obtiene cada punto de impacto del 
láser respecto del sistema fijo y ya solo queda asignarlo a una determinada celda del 
mapa.  

Las celdas se han numerado siguiendo los criterios de numeración de los elementos 
de una matriz. Como ejemplo consideraremos que el centro del mapa se encuentra en 
la casilla (3,3). En este caso, toda variación hacia la parte positiva del eje X irá 
aumentando el número de la columna, y toda variación en el sentido del eje Y positivo 
reducirá el número de fila de la matriz, tal y como describen las siguientes 
expresiones: 
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࢐ ൌ ࢉࢄ  ൅ ࢚࢔࢏ ൬
∆࢞

ࢇ࢒ࢇࢉ࢙ࡱ
൰ ࢞∆׊ ൐ 0 (36) 

࢐ ൌ ࢉࢄ  ൅ ࢚࢔࢏ ൬
∆࢞

ࢇ࢒ࢇࢉ࢙ࡱ
െ ૚൰ ࢞∆׊ ൏ 0 (22) 

࢏ ൌ ࢉࢅ  െ ࢚࢔࢏ ൬
∆࢟

ࢇ࢒ࢇࢉ࢙ࡱ
൰ ࢟∆׊ ൐ 0 (23) 

࢏ ൌ ࢉࢅ  െ ࢚࢔࢏ ൬
∆࢟

ࢇ࢒ࢇࢉ࢙ࡱ
െ ૚൰ ࢟∆׊ ൏ 0 (24) 

 

Donde:  

 .es la distancia del punto de colisión al centro del mapa en dirección ଵܺ ݔ∆ •

  .es la distancia del punto de colisión al centro del mapa en dirección ଵܻ ݕ∆ •

• Escala es la dimensión de la celda en metros.  

• Los valores ݆ e ݅ representan en números enteros la columna y la fila 
respectivamente de cada celda. 

 

4.9. ESTIMACIÓN DE ALTURAS Y GRADIENTES 

Una vez obtenidos los puntos de colisión y la determinación de la celda a la que 
corresponden, éstos son almacenados en una lista de longitud variable para cada 
celda, dicha longitud dependerá del número de puntos de colisión que hayan “caído” 
en dicha celda. 

El método para el cálculo de alturas y gradientes utilizado deriva de  [12] y  se basa en 
calcular el plano que mejor aproxima la nube de puntos que hay en cada celda. 
Básicamente aplica el concepto de regresión linear plana, obtener el plano que 
aproxima la nube de puntos, la altura del centro de ese plano corresponderá a la altura 
media de los puntos lo que se tomará como altura de la celda.  

 



UPM Enrique del Sol Acero 70 

Así, si la ecuación del plano se expresa de la forma: 

ࢆ ൌ ࢇ כ ࢄ ൅ ࢈ כ ࢅ ൅ ࢉ (40) 

Donde ܼ es la altura de la celda y ܺ e ܻ son las coordenadas en el plano del mapa. De 

esta forma el gradiente según ܺ será ܩ௫ ൌ  డ௓
డ௑

ൌ ܽ y el gradiente según ܻ será a su vez 

௬ܩ ൌ  డ௓
డ௒

ൌ ܾ.  Por lo que bastará calcular los coeficientes de dicha ecuación del plano 

para obtener los gradientes. 

Se trata pues de buscar el hiperplano que mejor se ajuste, para ello, uno de los 
criterios que se pueden utilizar es minimizar la suma de errores o residuos al 
cuadrado.  

Según el modelo de regresión múltiple expresado por: 

࢏ࢅ ൌ ૙ࢼ ൅ ૚ࢼ כ ࢏૚ࢄ ൅ ૛ࢼ כ ࢏૛ࢄ ൅ ڮ ൅ ࢑ࢼ כ ࢏࢑ࢄ ൅ ࢏࢛ (41) 

 

Donde  ݑ௜ ՜ ܰሺ0, ,଴ߚ  ଶሻ yߪ ,ଵߚ ,ଶߚ ,௞ߚ …  .ଶ son parámetros desconocidos a estimarߪ

Expresándolo en notación matricial: 

ተ

ተ

࢟૚
࢟૛
.
.
.

࢔࢟

ተ

ተ
ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
    ૚     

૚
૚
૚
૚
૚

࢞૚૚   
࢞૚૛

.

.

.
࢞૚࢔

࢞૛૚
࢞૛૛

.

.

.
࢞૛࢔

…
…
…
…
…
…

࢞࢑૚
࢞࢑૛
.
.
.

࢔࢑࢞

   

ے
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
૙ࢼ
૚ࢼ

.

.

.
ے࢑ࢼ

ۑ
ۑ
ۑ
ۑ
ې

൅

ۏ
ێ
ێ
ێ
ێ
ۍ
࢛૚
࢛૛

.

.

.
ے࢔࢛

ۑ
ۑ
ۑ
ۑ
ې

 (42) 

ࢅ ൌ ࢼࢄ ൅  (43) ࢁ

ࢁ ՜ ,ሺ૙ࡺ ࣌૛ࡵሻ (44) 

En el caso que nos ocupa, el vector de variables dependientes son el vector de alturas 
de cada celda, y el resto de variables independientes serían las coordenadas X e Y.  
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Para la estimación por mínimos cuadrados del sistema: 

ተ

ተ

࢟૚
࢟૛
.
.
.

࢔࢟

ተ

ተ
ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
    ૚     

૚
૚
૚
૚
૚

࢞૚૚  
࢞૚૛
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࢞૚࢔

࢞૛૚
࢞૛૛
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࢞૛࢔

…
…
…
…
…
…

࢞࢑૚
࢞࢑૛
.
.
.

࢔࢑࢞

   

ے
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
෡૙ࢼۍ

෡૚ࢼ
.
.
.

ے෡࢑ࢼ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൅

ۏ
ێ
ێ
ێ
ێ
ۍ
૚ࢋ
૛ࢋ
.
.
.

ے࢔ࢋ
ۑ
ۑ
ۑ
ۑ
ې

 (45) 

ࢅ ൌ ෡ࢼࢄ ൅  (46) ࢋ

Donde el vector e se define según (47)  

ԡࢋԡ૛ ൌ ෍ ࢏ࢋ
૛

࢔

ୀ૚࢏

 (47) 

Para que ԡ݁ԡଶ sea mínimo, e tiene que ser perpendicular al espacio vectorial generado 
por las columnas de ࢄ. 

ࢄ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ    ૚     

૚
૚
૚
૚
૚

࢞૚૚   
࢞૚૛

.

.

.
࢞૚࢔

࢞૛૚
࢞૛૛

.

.

.
࢞૛࢔

…
…
…
…
…
…

࢞࢑૚
࢞࢑૛
.
.
.

࢔࢑࢞

   

ے
ۑ
ۑ
ۑ
ۑ
ې

, ࢋ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
૚ࢋ
૛ࢋ
.
.
.

ے࢔ࢋ
ۑ
ۑ
ۑ
ۑ
ې

 (48) 

Cumpliéndose: 

ࢋࢀࢄ ൌ ૙ (49) 

ࢅࢀࢄ ൌ ෡ࢼࢄࢀࢄ ൅  (50) ࢋࢀࢄ

ࢅࢀࢄ ൌ ෡ࢼࢄࢀࢄ ՜ ෡ࢼ ൌ ൫ࢄࢀࢄ൯ି૚(51) ࢅࢀࢄ 
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Por lo tanto, los valores ߚଵ y ߚଶ corresponden directamente a los gradientes en sentido 
ܺ y en sentido ܻ respectivamente.  

Como ejemplo, la Figura 37 muestra una trayectoria con puntos de captura de datos o 
reconstrucción distanciados 50 m según coordenadas X e Y. En una  situación real, el 
robot es capaz de realizar varias reconstrucciones por segundo, por ello se prevé que 
se obtenga información con puntos muy poco distanciados.  

 

Figura 37. Ejemplo de trayectoria con indicación de los puntos de reconstrucción. 
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Los resultados de la reconstrucción de alturas para este caso se muestran en la  
siguiente figura: 

 

Figura 38. Ejemplo de reconstrucción. 

A simple vista, se puede apreciar que son resultados bastante satisfactorios. Sin 
embargo es mejor apreciarlo desde un punto de vista de planta cuantificando los 
errores de la reconstrucción respecto al mapa teórico ideal.  

Para ello, se han dividido los errores en intervalos discretizando los valores para una 
mejor observación (ver Figura 39). En ella, se puede apreciar como en los lugares 
cercanos a la posición del robot los errores son evidentemente muy bajos, del orden 
de 1 m y según aumente la distancia del punto al robot el error va creciendo. De hecho 
existen zonas como los picos de las montañas o los mínimos de los valles donde el 
láser no ha recogido información ninguna, en esos puntos el error es grande.  
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El error de reconstrucción correspondiente a la Figura 39 se representa en la Figura 
40. En ella, se puede observar un error aceptable como ya se ha comentado en casi 
todos los lugares excepto en las zonas cuya visibilidad se ha visto muy reducida.  

 

Figura 40. Error de reconstrucción discretizado. 

 

Figura 39. Discretización de la reconstrucción. 
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Para el cálculo del hiperplano de regresión es necesario que al menos caigan 3 puntos 
en una misma celda. Dado que este algoritmo calcula un plano para cada celda por 
cada paso de simulación y luego todos los datos son reinicializados, es necesario que 
ocurra esa condición para una misma matriz de lectura del láser. Esto no siempre 
ocurre así y es habitual encontrar un gran número de celdas que no tienen 3 puntos de 
impacto. Por ello en esas celdas no se puede calcular el hiperplano de regresión y se 
han buscado otros métodos de cálculo del gradiente basados en la información de las 
celdas vecinas, consistente en el cálculo a nivel celdas utilizando las alturas, como 
muestran las siguientes expresiones: 

࢐࢏ࢄࡳ ൌ
࢐ା૚ࢆ െ ࢐ࢆ

ࢇ࢒ࢇࢉ࢙ࢋ
(52) 

࢐࢏ࢅࡳ ൌ
࢏ࢆ െ ૚ି࢏ࢆ

ࢇ࢒ࢇࢉ࢙ࢋ
 (53) 

Donde:  

ܩ • ௜ܺ௝ es el gradiente en dirección ܺ del elemento ሺ݅, ݆ሻ. 

ܩ • ௜ܻ௝ es el gradiente en dirección ܻ del elemento ሺ݅, ݆ሻ. 

• escala es el valor del lado de la celda. 

Este método denominado “calculo del gradiente por filas y columnas”  da resultados 
muy aproximados y es válido para realizar los cálculos sin mucha precisión, pero en 
cualquier caso ha sido el método que mejores resultados ha aportado si bien el valor 
del gradiente calculado no está centrado en la posición de la celda en la que se 
asigna. Es decir, el gradiente se encuentra desplazado. 

La adaptación del método de cálculo de gradiente por filas y columnas consiste en 
utilizar cuatro celdas adyacentes de forma simultánea y calcular los gradientes en 
ambas direcciones utilizando los valores de las alturas de las cuatro celdas. Esto 
soluciona el problema cuando se tiene una acumulación de puntos cercanos pero con 
menos de 3 impactos por celda.  

Como mejora del método anteriormente descrito, se procedió al cálculo de la regresión 
utilizando varias celdas a la vez y estimando el mismo valor para todas ellas tal y como 
se describe a continuación. 
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Figura 41. Ejemplo de asignación de puntos de colisión para el cálculo de gradientes. 

En primer lugar se calculan los gradientes de todas las celdas donde el número de 
puntos de impacto es igual o superior a 3. Es decir, se calcularían los gradientes de las 
celdas (2, 2), (2, 7), (2, 8), (3, 7) y (3, 8). 

En segundo lugar se procede a recorrer el mapa desde la celda (1, 1) en grupos de 
cuatro  calculando los planos de regresión como si el grupo de cuatro celdas fuesen 
solo una y rellenando información solo para las celdas que no tengan ya calculado el 
gradiente. En este caso se calcularían los gradientes para los grupos de celdas de la 
forma siguiente: 

• Celdas (1, 1), (1, 2), (2, 1) y (2, 2) donde todas tomarían el valor del gradiente 
calculado en (2, 2) 

• Celdas (1, 3), (1, 4), (2, 3) y (2, 4)  donde se calcularían los gradientes según X 
e Y y se tomarían igual para las cuatro celdas puesto que ninguna de ellas 
tiene más de dos puntos de impacto. 

• Celdas (1, 7), (1, 8), (2, 7) y (2, 8). Como las celdas (2, 7) y (2, 8) ya tienen un 
valor calculado, este se mantiene pero la información de los 6 puntos de 
impacto se utiliza para calcular los gradientes de las otras dos celdas que no 
poseen información. 

1 

2 

3 

4 

5 

7 

6 

1  2  3  4  5  6  7  8  9 
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• Celdas (3, 1), (3, 2), (4, 1) y (4, 2) se calcularía un único gradiente común para 
todas. 

• Celdas (3, 3), (3, 4), (4, 3) y (4, 4). No se posee información suficiente para el 
cálculo de un plano puesto que solo hay 2 puntos de impacto. Lo mismo ocurre 
para el siguiente grupo de  cuatro celdas. 

• Celdas (3, 7), (3, 8), (4, 7) y (4, 8). Se calcularía el gradiente con los 6 puntos 
de impacto y únicamente se actualizaría el valor de las celdas de la fila 4. 

• Celdas (5, 1), (5, 2), (6,1) y (6, 2). No se posee información suficiente. 

• Celdas (5, 3), (5, 4), (6, 3) y (6, 4). Se calcularían los gradientes con los 4 
puntos de impacto y su valor se añadiría a las 4 celdas que forman la 
cuadricula.  

 

4.10. ASIGNACIÓN DE CONFIANZAS 

Con el concepto “confianza” se desea reflejar el nivel de seguridad que se posee sobre 
la información que alberga una celda. Esta seguridad va relacionada íntimamente con 
el número de puntos de impacto del láser en su interior y el tiempo transcurrido desde 
su reconstrucción, ya que se trata de entornos con objetos dinámicos. 

Debido a la forma de un entorno y la posición de un robot dentro del mismo, es posible 
que se produzcan un elevado número de puntos de impacto en algunas celdas y muy 
pocos o ninguno en otras muy cercanas. Adicionalmente, y dependiendo del tamaño 
de celdas utilizadas, es probable que los puntos de impacto dentro de una misma 
celda estén muy concentrados en una zona determinada y no haya ninguno en el resto 
del área. Por estas razones, la confianza en el valor de una celda va relacionada no 
sólo con el número de puntos de impacto que caigan sobre ella, sino también con su 
dispersión dentro de la celda. 

 Para evaluar la dispersión se han valorado diferentes alternativas, sobre todo desde el 
punto de vista de coste computacional, (tiempo de ejecución y requisitos de memoria). 
Entre ellas está calcular las coordenadas del punto medio de impacto y tomar la 
dispersión como la desviación típica y otros métodos estadísticos. Finalmente, el 
algoritmo más rápido y de menor requerimiento de memoria ha sido el algoritmo 
basado en la creación de subceldas. 

Este método, consiste en dividir cada celda en “n” subceldas, tal y  como muestra la 
Figura 42 donde la celda se ha dividido en 16 partes. 
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El algoritmo de asignación de confianzas calcula la subcelda asociada a cada punto de 
impacto mediante la lista de los puntos de impacto de una celda con sus coordenadas.  
A continuación, se cuentan las subceldas en las que al menos hay un punto de 
colisión. La confianza se calcula dividiendo el número de subceldas con puntos de 
colisión entre n con objeto de obtener un valor que varíe ente 0 y 1. El valor de n 
elegido durante las pruebas ha sido 16, este número deberá ser mayor cuanto mayor 
será el tamaño de la celda. 

Como se ha visto, con este procedimiento  se tiene en cuenta la distribución de los 
puntos de impacto y se calcula la confianza en base a dicha distribución, pero además 
de este criterio, se deben tener en cuenta otros parámetros como son las distancias 
del láser a los puntos de impacto.  

Debido a los errores de medida del láser y más aun a los errores en la estimación de 
la orientación (alabeo, cabeceo y guiñada), los errores de medida en las distancias 
crecen al aumentar la distancia de colisión. Por ello, es útil penalizar la confianza de 
los puntos de impacto lejanos para proporcionar una incertidumbre sobre los mismos 
de tal forma que no tenga la misma credibilidad un impacto del láser a 5 metros que 
otro a 70 metros por ejemplo.  Para ello se ha aplicado una función correctora de la 
siguiente forma: 

 

 

1   2   3   4 

5  6  7  8 

9  10  11  12 

13  14  15  16 

Figura 42. División en subceldas. 
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Figura 43. Coeficiente corrector en función de la distancia medida. 

 

Así, para valores de distancia medida del láser pequeños (menores del 75% del 
alcance máximo) se aplica un factor poco penalizador y para medidas de distancia de 
valores elevados (mayores al 75% del alcance máximo) se aplica un factor penalizador 
más elevado. Esta forma de corrección está basada en que el error de medida del 
láser no depende de la distancia medida, pero sin embargo, puntos de colisión muy 
lejanos se ven claramente afectados por pequeños errores en la estimación de la 
actitud del robot. 

El coeficiente corrector mostrado en la Figura 43, se puede expresar matemáticamente 
mediante las siguientes expresiones: 

ࢌ ൌ  
െ૙. ૛ ࡰ

૙. ૠ૞ ࢞ࢇࡹ࢕ࢍ࢔ࢇࡾ
൅ ૚       ࢙࢏ ࡰ ൏   ݔܽܯ݋75%ܴܽ݊݃

(54) 

ࢌ ൌ  
െ૙. ૟ሺ ࡰ െ ૙. ૠ૞ ࢞ࢇࡹ࢕ࢍ࢔ࢇࡾሻ

૙. ૛૙ ࢞ࢇࡹ࢕ࢍ࢔ࢇࡾ
൅ ૙. ૡ ࢏࢙ ࡰ ൐  (55) ݔܽܯ݋75%ܴܽ݊݃
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El diagrama de flujo de la asignación de confianzas sería por tanto el siguiente: 

 

Figura 44. Proceso de asignación de confianzas 

 

La  Figura 45 muestra de la confianza calculada mediante la simulación de una 
trayectoria del robot por un camino montañoso (Figura 37): 

 
Figura 45. Asignación de confianzas 

Lista de puntos de 
impacto

Clasificacion de puntos 
de impacto en subceldas

Recuento de subceldas 
impactadas

Aplicacion de factor de 
corrección
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La confianza se muestra alta para las zonas cercanas a la posición de simulación del 
robot en cada paso y se muestran bajas cuanto más se aleja de dichas posiciones. 

Habitualmente, en las siguientes reconstrucciones se puede obtener una confianza 
diferente para una celda. En apartados posteriores se describirán los procedimientos y 
algoritmos para la fusión de dicha información. 

 

Otros métodos probados para estimar la confianza 

Inicialmente, se desarrolló otro procedimiento para la asignación de confianzas, pero 
este último basado en subceldas es el que mejores resultados ha aportado. 

El método inicial se basaba en un recuento global del número de puntos impactados 
en una celda, sin tener en cuenta la dispersión de los mismos. El recuento era 
acumulativo, de forma que se sumaban los puntos de impacto de toda la simulación, 
acumulando los de medidas sucesivas del láser y la confianza se variaba de forma 
exponencial con asíntota en 1. De forma esquemática se procedía de la siguiente 
forma: 

Comienzo de la lectura de la matriz del láser, cálculo de los puntos de impacto para 
cada celda y suma del número de puntos totales. 

Cálculo de la confianza mediante: 

࡯ ൌ ૚ െ ࣎/࢔ିࢋ  

(56) 

Donde n corresponde al número de impactos sobre cada celda y ߬ la constante de 
crecimiento que es un parámetro a ajustar. Para calcular un valor aceptable de la 
constante de crecimiento de la confianza se estimaba el número mínimo de impactos 
necesarios para considerar una confianza máxima sobre la celda y de forma  que para 
n igual a 3, la confianza fuese del 95 por ciento. Este método conlleva varias 
desventajas respecto al elegido definitivamente: 

• La obligatoriedad de llevar una cuenta constante de los puntos de impacto. 

• La suma acumulada de puntos de impacto implicaba usar funciones de 
conversión logarítmicas para calcular al final de cada ciclo el número de puntos 
de impacto acumulados para poder sumarlo al número de puntos de impacto 
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en la lectura nueva del láser. Ya que las confianzas al proceder de una 
exponencial del numero de impactos no se pueden sumar directamente, sino 
que había que calcular el número de puntos de impacto acumulados mediante 
la confianza acumulada, sumar con el nuevo número de impactos y volver a 
aplicar la exponencial. 

• El cálculo de la constante de crecimiento de la exponencial resultaba algo 
arbitrario. 

• No se tenía en cuenta la dispersión de los puntos. 

4.11. Asignación de ocupación 

La ocupación de una celda mide la dificultad que tiene el robot para viajar por ella,  
teniendo en cuenta su pendiente. El nivel de ocupación de la celda influye en el 
momento de la planificación del recorrido que el robot debe realizar, eligiendo por 
ejemplo el camino de menor dificultad entre varios que lleguen al mismo sitio.  

Para calcular la pendiente de la celda se parte del gradiente de la misma, que 
representa la tangente del terreno según direcciones ܺ e ܻ.  

Como primera aproximación al cálculo de la ocupación se ha designado un valor de 1 
(ocupada) a aquellas celdas cuyo módulo del gradiente sea de 0.3 (máxima pendiente 
que puede traspasar un robot en la simulación). 

Para las celdas cuyo módulo del gradiente sea inferior, se calculará la ocupación 
mediante una función lineal que aumenta la ocupación desde módulo del gradiente 
nulo hasta módulo igual al valor máximo admisible. 

Este método, a pesar de ser extremadamente sencillo es eficaz para su utilización en 
la planificación. 

Se puede no obstante utilizar otros criterios, como basarse en el valor del  gradiente 
en ambas direcciones y cuando alguna de ellas supere un valor crítico considerar la 
celda como ocupada. En cualquier caso es una decisión fuertemente ligada al 
algoritmo de planificación de trayectorias utilizado.  

Como muestra, el ejemplo de la trayectoria ya mostrada en partes anteriores del 
presente proyecto. 
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Figura 46. Reconstrucción de la ocupación de un terreno 
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Se puede observar el mapa de la 

Figura 46 formado por semicírculos concéntricos distribuidos de manera más o menos 
uniforme. Dichos semicírculos corresponden a los impactos del láser sobre el terreno. 
El fondo indica las zonas de las que no se posee información sobre la pendiente del 
terreno y el módulo del gradiente viene coloreado según la escala situada a la 
derecha. 

A continuación se van a mostrar unas pruebas sobre un recorrido nuevo realizado en 
una distancia corta y a pequeña distancia entre cada punto de lectura del láser (Figura 
47). Se puede apreciar unos puntos azules entre una montaña grande, una pequeña y 
un valle también grande. La trayectoria tiene una longitud de 10 m y con una distancia 
de 0.5 m entre punto y punto. Como las distancias son grandes, solo merece la pena 
centrarse en las zonas donde el láser tiene alcance por lo que se han eliminado de las 
imágenes sobre la ocupación las zonas sin importancia. Aun así conviene centrarse en 
la parte central de la imagen que es donde se recopilado mayor información, por ello el 
error al comparar la reconstrucción con los resultados teóricos presenta allí la menor 
cuantía. 
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Figura 47. Trayectoria simulada mediante puntos muy cercanos entre si 

En esta imagen (Figura 47), se puede observar la trayectoria rectilínea del robot, 
mientras que en la siguiente imagen se tiene la ocupación teórica en base al módulo 
del gradiente. Se puede observar como la ocupación es mínima en el suelo y en 
determinados puntos de las parábolas que componen el relieve alcanza el valor 
máximo. Es de esperar que en la zona donde el robot esta transitando los valores 
reconstruidos sean muy parecidos a los valores teóricos y con ello el error se 
minimice. Pero en cambio, en las zonas alejadas donde la visibilidad del láser es 
reducida el error puede ser mayor. 
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Figura 48. Ocupación teórica dados unos gradientes conocidos 

 

Figura 49. Reconstrucción de la ocupación para la trayectoria de la Figura 47 
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En la Figura 48 se observa la ocupación teórica calculada conociendo todos los 
gradientes del área analizada y en la Figura 49 se puede apreciar la ocupación 
calculada utilizando las alturas reconstruidas. 

A continuación se puede observar el error obtenido al comparar ambos cálculos. 

 

Figura 50. Error en valor absoluto de la reconstrucción de la ocupación 

Como se puede observar, los resultados son buenos en las cercanías al robot. En las 
zonas lejanas pero con ocupación igual a la unidad el error es nulo, en cambio en las 
zonas donde la ocupación es inferior a la unidad hay mayor error. Esto se puede deber 
al método del cálculo de los gradientes ya que como se ha mencionado anteriormente, 
no se utiliza el mismo método para las celdas en las que hay puntos de colisión como 
en las que no los hay. No obstante, al tratarse de puntos alejados, la influencia del 
error es mucho menor ya que este se verá reducido cuando el robot se acerque a 
ellos.  
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coordenadas de dichos puntos para dar a la celda correspondiente un aumento de la 
probabilidad de no ocupación.  

El algoritmo que se utilizaría sería el siguiente: 

 

 

Figura 53. Esquema del algoritmo de asignación de libertades 

Análisis del rendimiento en la ejecución 

Si se analiza la ejecución del software corriendo esta característica de asignación de 
libertades se aprecia un notable aumento del tiempo de ejecución. Y son los 
subprogramas encargados de proporcionar esta funcionalidad los que consumen más 
tiempo. Por lo tanto, se puede afirmar que al añadir la funcionalidad de asignación de 
libertades aumenta considerablemente el tiempo de ejecución, mientras que es 
probable que la utilidad de los resultados conseguidos no aumente de la misma forma. 

 

Lanzamiento del 
rayo laser

Parametrización 
del rayo

Recorrido del rayo 
calculando las 
coordenadas de 
cada punto

Z punto > Z suelo

&

Z punto < Z suelo + Zcritica

Asignacion de 
libertad

Si  No 



UPM Enrique del Sol Acero 91 

 

Función Llamadas Tiempo Total Tiempo propio 

SimDataMapping 1 944.382 s 3.319 s 

SimLáser 5 524.629 s 180.254 s 

M45DataMapping 5 419.061 s 6.248 s 

Roots 2717715 341.375 s 341.375 s 

FreedomAssignment 43383 324.968 s 95.573 s 

Local2FixedCoord 1801875 136.363 s 136.363 s 

Coordinates2Cell 1801890 98.985 s 59.986 s 

QuadsNumber 10 68.961 s 35.119 s 

MapCenterIndex 2377899 51.370 s 51.370 s 

ConfidenceAssignment 5 33.841 s 0.561 s 

Cell2Coordinates 576009 33.841 s 21.470 s 

Heigh and Gradient 
Estimation 

5 3.958 s 3.506 s 

LowResMap fusión 5 3.755 s 3.272 s 

Create LRM 5 2.119 s 2.119 s 
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Create HRM 5 1.652 s 1.636 s 

Layers Fusion 10 0.982 s 0.966 s 

FusionTemporal2Local 5 0.499 s 0 s 

Spherical2Cartesian 43385 0.390 s 0.390 s 

 

Subprogramas principales utilizados en la simulación del entorno: 

• SimDataMapping: 3.319 s  0.63 % 

• SimLáser: 180.254 s  34.33 % 

• Roots: 341.375  65.03 % 

 

Subprogramas principales utilizados para la funcionalidad real 

• M45DataMapping: 1.52 % 

• FreedomAssignment: 23.02 % 

• Local2FixedCoord: 32.85 % 

• Coordinates2Cell: 14.4 % 

• QuadsNumber: 8.46 % 

• MapCenterIndex: 12.37 % 

• ConfidenceAssignment: 0 % 

• Cell2Coordinates: 5.17 % 

• Heigh and Gradient Estimation: 0.81 % 

• LowResMap fusión: 0.78 % 

• Create LRM: 0.51 % 
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• Create HRM: 0.39 % 

• Layers fusión: 0 % 

• FusionTemporal2Loca: 0 % 

• Spherical2Cartesian: 0 % 

Estas cifras indican cuantitativamente lo comentado anteriormente de forma 
cualitativa. La funcionalidad introducida viene representada por la función 
FreedomAssignment y se observa que consume el 23.02 % del tiempo siendo la 
segunda función que más consume en todo el proceso. 

Interpretación de los resultados 

¿Qué información aporta la llamada asignación de libertad? Suponiendo que se posee 
un conocimiento previo del terreno en forma de mapas, la libertad estaría dando una 
información adicional a los puntos de impacto del láser. Una información que consiste 
en que el láser ha podido atravesar dicha zona ya que ha pasado entre la altura del 
suelo y la crítica, por ese motivo se pueden sacar  las siguientes conclusiones: 

• El área atravesada por el láser y tomada como libre no ha sido ocupada por 
ningún objeto desde la creación del mapa tomado como referencia. 

• A falta de información de la capa de gradientes, se puede utilizar la capa de 
libertades como complemento a la de ocupación. De esta forma donde no se 
tenga información del gradiente y si se posea de la libertad, se tomará 1 െ
 .como el nivel de ocupación en dichas celdas ݀ܽݐݎܾ݈݁݅
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Figura 54. Reconstrucción de la ocupación y asignación de libertad para una 
trayectoria simple 

Se puede apreciar que al tener en cuenta la capa de libertad la información obtenida 
del terreno es mucho mayor. Conviene por tanto no desperdiciar esa información y 
utilizarla siempre que no se tengan datos sobre el gradiente del terreno para calcular la 
ocupación real. La capa de libertad se convierte en una hipótesis de trabajo para el 
robot, representando una alternativa para cuando este debe planificar una trayectoria y 
son necesarios datos adicionales que no se poseen. No es representa una certeza 
absoluta sobre el grado de ocupación del terreno sino que es únicamente un punto de 
partida para comenzar el movimiento. 

Uniendo la información de ambas capas en una sola se puede comprobar cómo la 
cantidad de información recopilada usando la capa de libertad es mucho mayor que 
sin usarla. En el ejemplo que se está analizando se pasa de información obtenida  
sobre la ocupación para  726 celdas  a información sobre 2239 celdas lo que 
corresponde a un aumento del orden del 300 % en cantidad de información. Aunque 
no es totalmente cierto que una probabilidad muy baja de que la superficie este libre 
sea equivalente a que exista una probabilidad alta de que esté ocupada, a falta de 
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información si se puede utilizar esta. Gráficamente se pueden comprobar los 
resultados con una mayor percepción de las mejoras encontradas. Con todo esto se 
puede concluir que dependiendo de la potencia de cálculo disponible, es útil disponer 
de este nuevo algoritmo puesto que aumentando el tiempo de cálculo en un 23 %, el 
rendimiento en la obtención de información aumenta en un 300 %. 

 

Figura 55. Ocupación calculada de forma simple 
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Figura 56. Ocupación calculada con la información proveniente del algoritmo de asignación de 
libertades 

4.13. OPERACIONES SOBRE LOS MAPAS 

En el proyecto final de carrera presentado, se pueden distinguir dos categorías de 
fusión de información: 

• Fusión de la información existente en un mapa con la nueva información 
procedente de la reconstrucción con el láser. 

• Fusión de la información procedente de varios robots que colaboran en la 
definición de un mapa global. 

A continuación se detalla cada una de ellas. 

4.13.1. Fusión de la información nueva con la información 
existente en alta resolución. 

La información de alta resolución que se reconstruye con la última adquisición del 
láser debe ser fusionada con la información previa del entorno (también disponible con 
alta resolución). Este es uno de los principales procesos de todo el sistema de 
mapeado ya que la forma de fusión de los datos influye mucho en los resultados 
finales. 

Como se está trabajando con mapas dinámicos, puede ocurrir que al observar una 
celda la información nueva sea similar a la información previa o sea totalmente 
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distinta, si por ejemplo algún objeto móvil ha invadido el área analizada. Por ello, el 
algoritmo no solo debe tener en cuenta la actualización de una celda por una mejor 
observación de la misma sino por un posible cambio en el contenido. 

Como se ha definido anteriormente, se denomina aux_MapCell_local al mapa que se 
reconstruye contando como única información un escaneo del láser, este mapa 
temporal se va fusionando tras cada lectura del láser con el mapa de alta resolución 
(HRM) que va acumulando la reconstrucción dentro de la misma área.  

El algoritmo propuesto comienza comprobando la matriz de celdas del mapa temporal 
aux_MapCell_local. Aquellas celdas que posean confianza no nula, contendrán 
información reconstruida con el último escaneo y será necesario fusionar dicha 
información con la posible ya existente para la misma celda en el mapa de alta 
resolución. En este proceso se pueden considerar dos casos diferenciados: 

• Los datos son similares. 

• Los datos son muy diferentes. 

Cuando no se produce un cambio brusco en las estimaciones del  terreno, sino que 
simplemente varía ligeramente la información recolectada en ese entorno, los datos 
fusionados son el resultado de aplicar una ponderación en función de las confianzas 
del dato del mapa de alta resolución y el mapa auxiliar. 

࢑ା૚࢕࢚ࢇࢊ ൌ
࢑࢕࢚ࢇࢊ כ ࢑ࢇࢠ࢔ࢇ࢏ࢌ࢔࢕ࢉ ൅ ࢒ࢇࢉ࢕࢒_࢒࢒ࢋ࡯࢖ࢇࡹ_࢛࢞ࢇ࢕࢚ࢇࢊ כ ࢒ࢇࢉ࢕࢒_࢒࢒ࢋ࡯࢖ࢇࡹ_࢛࢞ࢇࢇࢠ࢔ࢇ࢏ࢌ࢔࢕ࢉ

࢑ࢇࢠ࢔ࢇ࢏ࢌ࢔࢕ࢉ ൅ ࢇࢊ࢏ࢊࢋ࢓ࢇࢠ࢔ࢇ࢏ࢌ࢔࢕ࢉ
 ( 25) 

 

Para discernir si los datos son parecidos o no,  se ha establecido un umbral de ±10º 
entre los gradientes. Éste, es un parámetro ajustable con la práctica y con las 
simulaciones posteriores que se han de hacer en Microsoft Robotics Studio. 

Si por el contrario el gradiente del mapa auxiliar es claramente diferente del 
almacenado en el mapa se consideran tres posibilidades: 

• Hay una diferencia importante en el valor de la confianza. Lo que significaría 
que uno de los dos valores es más fiable que el otro y se procedería a utilizar el 
valor más fiable de los dos. 
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• Hay un valor de confianza parecido y pequeño. En este caso, los dos valores 
parecen ser sensibles a la parte de la celda estimada por lo que el valor de 
mayor confianza será utilizado. 

• Hay un valor de confianza parecido y elevado en ambos casos. En esta 
situación, lo más probable es que haya habido un cambio en el entorno y como 
tal, la nueva estimación sustituye a la antigua. 

 

Aquí se produce otra disyuntiva, cuando se trata de distinguir que significa confianza 
mayor. Se está considerando que unos datos tienen confianza mayor que otros 

cuando se cumple: ܽݖ݂݊ܽ݅݊݋ܥ௠௘ௗ௜ௗ௔ ൐ ሺ ଶ
ଵ଺

൅  ௞ሻ  lo que equivale a decir queܽݖ݂݊ܽ݅݊݋ܥ

hay al menos dos subceldas más de observación en las nuevas medidas que en las 
acumuladas. 

Este caso se puede dar en la práctica cuando un robot detecte un cambio en la celda 
con una gran visibilidad del mismo y se puede considerar información muy fiable, por 
ello aunque provenga de una única medida se le dará la importancia necesaria y se 
actualizará el mapa. 
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Figura 57. Algoritmo de fusión de la información 

Observacion de una celda

¿Confianza ≠ 0?

Gxmedida ≈ Gx(k) 
&

Gymedida≈ Gy(k)

¿Algo diferente con 
confianza nueva menor?

¿Algo diferente con 
confianza nueva mayor?

¿Algo diferente con 
confianza nueva parecida?

Fin

Gx(k+1)=Gxmedida 
Gy(k+1)=Gymedida 
 H(k+1)=Hmedida 

Libertad(k+1)=Libertadmedida 
Ocupación(k+1) =Ocupacionmedida 
Confianza(k+1)=1/16  

Actualizacion ponderada de 
Gx(k), Gy(k), H(k), libertad(k), 
ocupación(k) 
Confianza(k+1)=max(Confianza
(k), Confianzamedida)k),  

Si 

No se actualiza nada  

Gx(k+1)=Gxmedida 
Gy(k+1)=Gymedida 
 H(k+1)=Hmedida 

Libertad(k+1)=Libertadmedida 
Ocupación(k+1) 
=Ocupacionmedida 
Confianza(k+1)=Confianzamedida  

Si 

Si 

Si 
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Se ha hablado mucho sobre la fusión de alturas, gradientes, ocupación, libertad, pero 
no se ha dicho nada sobre las capas de comunicación y de señal GPS. Para ellas no 
existe fusión, dado que el último valor será el válido puesto que la calidad en la 
recepción de la  señal GPS y comunicación puede variar con el tiempo. Por lo tanto, 
para cuando una nueva medida sea incorporada al mapa, esta medida sustituirá a la 
anterior si existía  y en el caso de que no fuera así se añadirá a las medidas 
existentes. Se hace notar que esta actualización solo se da en las celdas por las que 
transita el robot. 

Con este algoritmo se ha abordado la fusión de la información temporal con la 
información acumulada, ambas en alta resolución. Posteriormente a esta fusión la 
información temporal será reemplazada por la nueva medida y el proceso se repetirá 
cíclicamente. 

 

4.13.2. Conversión de alta a baja resolución 

La información almacenada en el mapa de alta resolución es inmediatamente 
traspasada al mapa de baja resolución (LRM). Adicionalmente, cuando el robot se 
desplaza y el alcance de los sensores traspasa los límites del mapa de alta resolución, 
es necesario crear información de las nuevas celdas de alta resolución basándose en 
la información almacenada en las celdas de baja resolución contiguas al mapa 
anterior. 

Considerando la primera conversión descrita, es necesario  condensar la información 
de varias celdas del HRM para dar lugar a una única celda del LRM.  

El número de celdas del HRM que se deben fundir para dar lugar a una del LRM es el 
siguiente:  

 

ࡹࡾࡴ ࢙ࢇࢊ࢒ࢋࢉ ºࡺ ൌ
࢙ࢇࢊ࢒ࢋࢉ ºࡺ ࡹࡾࡸ ࢙ࢋ࢚࢔ࢋ࢒ࢇ࢜࢏࢛ࢗࢋ כ ࢇ࢒ࢇࢉ࢙ࡱ ࡹࡾࡸ

ࢇ࢒ࢇࢉ࢙ࡱ ࡹࡾࡴ
 (26) 

 
 

Este proceso ha sido dividido en dos partes, primero se realiza la fusión de las celdas 
necesarias del HRM para dar lugar a un nuevo LRM୪୭ୡୟ୪ , mapa que representa un 
mapa local con la resolución adaptada a la del LRM. Posteriormente se situará el 
nuevo LRM୪୭ୡୟ୪ sobre el LRM, centrando el local en el punto correcto del global se 
procederá a su fusión con el mismo algoritmo que se ha comentado anteriormente 
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para fusionar una medida temporal con las medidas acumuladas del HRM. El proceso 
es el siguiente: 

 

Figura 58. Esquema de actualización del HRM 

 

Cambio de resolución 

El proceso de cambio de resolución se realiza condensando el número adecuado de 
celdas del HRM mediante una media ponderada según la confianza de cada celda.  

En este caso, se calcula la media ponderada de todos los elementos de la capa de 
información correspondientes a una celda de baja resolución con los elementos de la 
capa de confianza y resultan un determinado dato que se tomará como valor para 
obtener una celda del LRM୪୭ୡୟ୪. De esta forma, recorriendo la matriz HRM por grupos 
de elementos se va creando el nuevo mapa local con la nueva resolución. 

 

 

 

High Resolution Map

Cambio de resolucion. 
Obtencion de  LRMlocal.

Redimensionamiento de  
LRMlocal.

Obtencion de LRM'

Fusion de LRM con LRM'
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   5.1 5.0   

  5.2 4.8   

      

      

                Capa de información del HRM 

 

      

   0.1 0.15   

  0.6 0.5   

      

      

                  Capa de confianza del HRM 

Figura 59. Ejemplo de actualización del HRM mediante media ponderada por las confianzas 

La expresión que resume el algoritmo utilizado es: 

,࢑࢏ሺ ࢕࢚ࢇࡰ ࢐࢑ሻࡹࡾࡸ ൌ
∑ ∑ ࢇࢠ࢔ࢇ࢏ࢌ࢔࢕࡯ ሺ࢏, ࢐ሻࡹࡾࡴ ൉ ,࢏ሺ࢕࢚ࢇࡰ ࢐ሻ࢐ࡹࡾࡴୀ࢐૛

࢐ୀ࢐૚
૛࢏ୀ࢏
૚࢏ୀ࢏

∑ ∑ ࢇࢠ࢔ࢇ࢏ࢌ࢔࢕࡯ ሺ࢏, ࢐ሻ࢐ࡹࡾࡴୀ࢐૛
࢐ୀ࢐૚

૛࢏ୀ࢏
૚࢏ୀ࢏

 (27) 

 

 

 

 

5.022 4.3 4.4 

6.3 7 5.1 
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Ajuste de dimensión 

Como segundo paso para la fusión al LRM está el redimensionamiento del LRM୪୭ୡୟ୪ 
para obtener el LRM’. Para realizar esto se debe localizar el centro del HRM dentro del 
LRM y copiar la matriz obtenida LRM୪୭ୡୟ୪ en el lugar correcto dentro de una matriz 
vacia y rellena de ceros.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 60. Proceso de fusión del HRM con el LRM. Primero se redimensiona el HRM 
obteniendo un mapa en baja resolución de un tamaño local. Posteriormente dicho mapa se 
posiciona adecuadamente dentro de un mapa de dimensiones globales. 

Fusión de la información 

Para la fusión de la información del nuevo mapa creado LRM’ con el LRM que se 
encarga de registrar las medidas acumulativas se emplea el algoritmo de fusión 

HRM
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comentado anteriormente en el apartado dedicado a la fusión de datos del HRM. El 
algoritmo, basado en comparación de confianzas e innovaciones de los datos  ha dado 
un buen resultado en el proceso de reconstrucción. 

4.13.3. Conversión de baja a alta resolución 

A medida que el robot se va desplazando por el mapa surge la necesidad de renovar 
el mapa local (HRM) porque su alcance se sale de las dimensiones de este. Es en 
esos momentos cuando cobra especial importancia el paso de información del LRM al 
HRM con el objeto de renovar la información local a medida que se produce el 
desplazamiento del robot.  

Este proceso es parecido al proceso inverso que ya se ha comentado pero con 
algunas diferencias importantes.  

En primer lugar, hay que detectar el momento oportuno para la toma de los datos pero 
eso ya se comentó en apartados anteriores y no se repetirá aquí.  

Posteriormente, se produce una copia de información del LRM al HRM teniendo en 
cuenta la fórmula para adaptar el número de celdas. En este caso lo habitual es que 
una celda del mapa de baja corresponda a varias celdas del mapa de alta. En esta 
conversión de resolución lo único que se puede hacer es dar a las celdas del HRM 
correspondientes a una del LRM la misma información, puesto que no hay otra forma 
de dividir la información.  

Este proceso de copia de información se hace únicamente para las nuevas celdas del 
mapa de alta resolución, respetando la información previa de las ya existentes. Para 
ello, se obtiene la información del mapa de baja resolución de la zona donde se sitúa 
el robot y se extenderá en el mapa de alta resolución. Este proceso se hace 
transmitiendo la misma información a todas las celdas correspondientes. 

En la Figura 61, se pueden observar dos fragmentos de ambos mapas. Se puede 
apreciar como la información contenida en una celda del LRM se extiende a 4 celdas 
correspondientes del HRM. Esto ocurre así cuando la escala del LRM es el doble del 
HRM.  
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  5.2 5.2 4.3 4.3 

  5.2 5.2 4.3 4.3 

      

      

               

Figura 61. Transmisión de información del HRM al LRM. 

 

La Figura 62 izquierda muestra un ejemplo de un mapa de alta resolución extraído de 
una determinada área del LRM según una vista del plano X-Z  con objeto de ilustrar 
como el contorno del mapa local queda un poco deteriorado al haber sido capturado 
de un mapa de resolución menor. La figura de la derecha muestra el mapa real de alta 
resolución. Este efecto lógicamente se ve más acusado cuanto mayor sea la diferencia 
entre ambas escalas. 

 

Figura 62. Comparación de mapas de alta resolución reconstruidos e importados 
desde mapas de baja resolución.  

 

Ej. Si la escala del LRM es el 
doble que el HRM 1 celda de 
baja correspondería a 4 celdas 
de alta resolución. 

 

5.2 4.3 4.4 

6.3 7 5.1 
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5. Localización visual del robot. 

5.1. INTRODUCCIÓN 

Si bien la calidad actual de los receptores GPS permiten un posicionamiento en 
exteriores con una precisión muy elevada, llegándose al orden del centímetro en 
tiempo real, el principal inconveniente que presentan se debe a que la recepción de la 
señal GPS no está garantizada en todo tiempo y lugar. 

Con el objeto de localizarse cuando la señal GPS no está disponible en algún sitio, el 
robot combina diversas técnicas para obtener la estimación de su estado. En primer 
lugar, se dispone de la información de los sensores internos del robot como los 
sensores inerciales y la odometría. Esta información es fusionada mediante un filtro de 
Kalman y se obtiene una estimación del estado del robot (posición y actitud) que 
presenta como principal inconveniente la deriva con el tiempo ya que ambos 
procedimientos se basan en navegación incremental. Con el objetivo de establecer un 
sistema de posicionamiento que permita reducir las derivas de la estimación así 
obtenida se han desarrollado varios algoritmos que permiten la localización del robot 
dentro del mapa de alta resolución que está construyendo. 

Los sistemas de localización y mapeado simultáneo conocidos por su nomenclatura 
inglesa como SLAM “Simultaneous location and mapping” son un campo muy activo 
en la investigación actual, sobre todo en interiores.  

En el presente proyecto no se pretende realizar tal tipo de algoritmos, ya que se 
dispone de posicionamiento global y tanto el robot como el mapa quedan 
perfectamente referenciados, si bien las técnicas utilizadas derivan de las usadas en 
las aplicaciones SLAM estándar. 

El objetivo del proceso de localización visual es usar la información del entorno del 
robot (lo que el robot detecta) para inferir cual es su localización dentro del mapa. Más 
detalladamente, se trata de usar la información que proporciona el láser, la cual 
permite una reconstrucción parcial del entorno y a continuación, “buscar” dicha 
información en un mapa donde los elementos reconstruidos están perfectamente 
referenciados e inferir así la posición del robot. 

Habitualmente, un EKF (Filtro de Kalman Extendido) es la base de ésta técnica, que 
permite actualizar la estimación del estado del robot basándose en las características 
del entorno usadas como marcas naturales.  
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Las marcas naturales son características que pueden ser fácilmente reobservadas y 
distinguidas del resto del entorno, por lo que deben ser fácilmente reobservables 
permitiendo  ser detectadas por ejemplo desde diferentes posiciones y diferentes 
ángulos. A su vez, deben tener como principal característica que sean distintas unas  
de otras, con objeto de no confundirlas. Evidentemente, todo lo que se tome como 
marca debe ser estacionario o bien conocer su posición en el momento de la 
detección. Así, un robot podría usar de marca  a otro si conociese su posición en el 
momento en que éste es detectado. 

Mediante un EKF se puede mantener un registro de la estimación de la posición y de 
su incertidumbre para todas las marcas y por lo tanto también para el propio robot.  
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A continuación se puede observar un esquema de un proceso general: 

 

Figura 63. Esquema general de un proceso SLAM 

 

Habitualmente, se puede utilizar una estructura de filtro de Kalman fuertemente 
acoplada, en la que tanto los estados procedentes de las estimaciones de la odometría 
o los sistemas inerciales es fusionada en un único filtro con la estimación de la 
posición de las marcas.  

En el caso del proyecto final de carrera, no se ha utilizado esta opción y se ha utilizado 
una estructura de acoplamiento débil con filtros de Kalman es cascada, debido a que 
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existe un sistema de posicionamiento GPS que permite un posicionado muy preciso y 
se evita ejecutar las tareas de localización visual cuando éste está disponible. 

Como indica la Figura 63, se produce una estimación del estado (posición y actitud) 
del robot  que sirve como modelo para predecir el estado en el instante posterior. 
Como señal de medida se utiliza la posición del robot estimada a través del proceso de 
localización visual. En dicho proceso, las marcas re-observadas en la reconstrucción 
son localizadas en el mapa y estimar así la posición del robot. 

Los siguientes diagramas intentaran explicar este proceso en más detalle: 

 

 

 

 

a)         b)                 c)      d) 

Figura 64. Diagramas que muestran el proceso de localización en base a 
características del terreno 

El robot es representado en la Figura 64 por un triángulo de color negro, las estrellas 
representan marcas y los rayos representan las medidas iniciales usando las 
posiciones de las marcas. La figura b) muestra la nueva estimación de la posición del 
robot en base al sistema inercial y odometría (triángulo blanco) y la posición real 
alcanzada por el robot en negro. En la figura c) el robot vuelve a localizar las marcas y 
estimar su posición relativa a ellas y por lo tanto estimación de la posición absoluta 
que se introduce en el filtro para lograr una estimación de la posición final, indicada en 
la d). 

En el proyecto final de carrera se han implementado diferentes clases de algoritmos de 
localización visual, que se detallan a continuación. 

5.2.  ALGORITMO BASADO EN COMPARACIÓN DE MAPAS 

En lugar de la utilización de marcas, en este algoritmo se utiliza la reconstrucción local 
del terreno visionado en un único instante por el láser para generar un mapa parcial de 
alta resolución, a continuación se desplaza el mapa con reconstrucción parcial sobre el 
mapa de reconstrucción total hasta alcanzar la máxima similitud. 
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Para generar el índice de similitud se han utilizado las capas de alturas y la capa de 
gradientes de ambos mapas. Si bien la capa de gradientes es invariante al error de 
posición en altura (la altura es también estimada sin la ayuda del GPS) dispone de 
menor información que la capa de alturas. 

El algoritmo de desplazamiento de un mapa sobre el otro  tiene dos fases claramente 
diferenciadas. En primer lugar se realizan saltos a nivel celda, por lo que la salida de 
esta parte del algoritmo consistirá en la estimación de la celda en la que más 
probablemente se encuentre el robot. Con un coste computacional mayor, se realiza la 
estimación al nivel subcelda, consiste en reconstrucciones tomando como punto de 
partida subceldas y comparando la similitud, con lo cual la salida estimada es la 
subcelda en la que más probablemente se encuentra el robot. 

Hipótesis de partida 

En la primera parte del algoritmo de hay que hacer una serie de suposiciones para 
comenzar la búsqueda de la posición del robot. Estas suposiciones son: 

• No existe un error apreciable en la atitud del robot. Los ángulos de Euler 
proporcionados por el sistema son prácticamente exactos. Solo existe error en 
la posición y este error esta acotado. Esta hipótesis es razonable ya que la 
precisión en actitud de la unidad de medida inercial está por debajo del grado. 

• Inicialmente se supondrá que la distancia del robot al origen de la celda es 
conocida y exacta. Esta suposición es necesaria para realizar la reconstrucción 
del mapa local respecto del origen de la celda en lugar de realizarlo desde el 
punto donde esté situado el robot. Más tarde se justificará el porqué de esta 
decisión. 

 

 

 

 

 

 

 

 

 

ε
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Esta distancia denominada ε será la hipótesis de partida para el comienzo de la 

búsqueda ya que es la mejor aproximación que se posee al estado del robot. 

• El error de posicionamiento máximo esta acotado. Aunque la odometría tenga 
un error que es en principio acumulativo, a fusión con las medidas inerciales 
mediante el filtro Kalman mejora mucho las estimaciones y no es probable que 
el funcionamiento sin GPS se alargue demasiado en el tiempo. Este algoritmo 
está preparado para actuar en ambientes donde el GPS se pierde de forma 
ocasional por lo tanto el error estará acotado en un cuadrado de un 
determinado número de celdas. Por tanto no se buscará en todo el mapa de 
baja resolución sino que se busca en un área determinada, reduciendo con 
ello los tiempos de cómputo. 

Esquema del algoritmo principal a nivel celda. 
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Los primeros pasos son similares a los ya comentados para el proceso de 
reconstrucción habitual del robot. En primer lugar se parte de la matriz de distancias 
del láser. Posteriormente se realizan las transformaciones matriciales habituales para 
la obtención de las coordenadas de cada punto de impacto. Con la única salvedad que 
aquí no se reconstruye respecto al origen del sistema fijo sino que se reconstruye 
respecto al origen de la celda donde se ha supuesto que se encuentra el robot. 

La justificación de por qué se elige como punto de referencia el origen de la celda es la 
siguiente.  Suponiendo que el estado real del robot sea el mostrado en la Figura 65, en 
la que el robot no se encuentra en la esquina de la celda (caso más habitual) y Y si se 
hiciera una reconstrucción cuyo origen fuera el propio robot, ( bastante más simple de 
realizar en la práctica puesto que no se necesita conocer las posiciones absolutas del 
robot sino que únicamente con las distancias medidas por el láser y la estimación de 
actitud) el resultado sería el mostrado en la Figura 66, en la que los mapas a comparar 
quedarían muy desalineados. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 65. Localización del robot en el momento de comienzo de la localización 
visual 

Figura 66. Desalineamiento de los mapas producidos por error en la estimación 
de la posición del borde de la celda 
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Por supuesto, el hecho de contar con una estimación inicial de la posición para tener 

en cuenta una estimación inicial de ε  reduce mucho dicho desalineamiento. 

La determinación del área de búsqueda se hace en base a los errores previsibles 
máximos que pueda tener la odometría. Habitualmente se ha estado tomando una 
distancia variable entre 3 y 10 metros de radio en los ensayos. Por ello, se delimitan 
las celdas del LRM que serán susceptibles de búsqueda. 

 

 

 

 

 

 

 

 

 

 

 

 

Para la comparación de mapas, una vez seleccionadas las celdas candidatas a 
albergar al robot, se comienza extrayendo un mapa local centrado en el punto 
característico de cada una de ellas. De esta forma si se tienen 9 celdas del LRM 
candidatas se tendrán también 9 mapas de alta resolución extraídos para comparar 
con el mapa local realizado en los primeros pasos de la localización. El proceso de 
extracción del mapa local centrado en cada celda sigue el mismo procedimiento que el 
comentado en el apartado de extracción de un HRM ya comentado. Se trata de 
seleccionar el punto central del nuevo mapa, que en este caso será el punto 
característico de cada una de las 9 celdas. Posteriormente se delimita la nueva área 
de baja resolución a capturar y se transforma en un nuevo mapa de alta resolución. El 
proceso se repetirá cíclicamente con cada uno de las celdas candidatas. La Figura 68 
ilustra  de forma gráfica el proceso. 

  

Figura 67. Mapas perfectamente alineados 



UPM Enrique del Sol Acero 114 

 

 

 

 

 

 

 

 

 

 

 

 

 

El HRM asociado a la primera celda candidata sería el sombreado rojo. En este caso 
se ha mostrado con unas dimensiones de 3 x 3 celdas que coincide con la longitud de 
testeo, pero esto no tiene porque ser así. De esta forma, se tendrían 9 mapas de alta 
resolución, cada uno centrado en la celda correspondiente candidatos a ser 
comparados por diversas métricas. 

Las métricas que han sido probadas son las siguientes: 

• Módulo de las normas al cuadrado de los errores en el gradiente 

• Norma al cuadrado de los errores en la altura 

• Norma infinito aplicada a los gradientes 

• Norma infinito aplicada a las alturas 

• Combinación dos a dos 

Cálculos realizados para la comparación de mapas 

a) Módulo de las normas al cuadrado de los errores en el gradiente 

 

Figura 68. Extracción de mapas 
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La fórmula aplicada para calcular esta métrica es la siguiente: 

ࢋ࢚࢔ࢋ࢏ࢊࢇ࢘ࢍ ࢘࢕࢘࢘ࢋ ൌ ඥࢋ૚૛ ൅ ૛૛ࢋ (28) 

૚ࢋ ൌ ෍  ሺ࢑࢒ࢇࢉ࢕࢒ ࢄࡳ െ ࢄࡳ ࢑࢕࢚ࢇࢊ࢏ࢊ࢔ࢇࢉ

࢔

࢑ୀ૚

ሻ૛ (60) 

૛ࢋ ൌ ෍  ሺ࢑࢒ࢇࢉ࢕࢒ ࢅࡳ െ ࢅࡳ ࢑࢕࢚ࢇࢊ࢏ࢊ࢔ࢇࢉ

࢔

࢑ୀ૚

ሻ૛ (61) 

Donde: 

 ௞ es un elemento k de la matriz de gradientes según la dirección X del݈ܽܿ݋݈ ܺܩ •
mapa reconstruido respecto al punto característico de la celda donde se 
supone situado el robot. 

 .௞ equivalente al anterior en la dirección Y݈ܽܿ݋݈ ܻܩ •

 ௞ es un elemento k de la matriz de gradientes según dirección X݋ݐܽ݀݅݀݊ܽܿ ܺܩ •
del mapa local generado a partir de una determinada celda candidata. 

 .௞ equivalente al anterior en dirección Y݋ݐܽ݀݅݀݊ܽܿ ܻܩ •

Esta métrica aplicada a todos los mapas candidatos centrados en cada una de las 
celdas candidatas produce como resultado de salida una celda óptima donde se ha 
producido el  error mínimo.  

Norma al cuadrado de los errores en la altura 

࢘࢕࢘࢘ࢋ ࢇ࢛࢚࢘࢒ࢇ ൌ ෍ ሺࢆ ࢑࢒ࢇࢉ࢕࢒ െ ࢆ ࢑࢕࢚ࢇࢊ࢏ࢊ࢔ࢇࢉ

࢔

࢑ୀ૚

ሻ૛ (62) 

Donde: 

 ௞ corresponde a la altura medida en un elemento k de la matriz de݈ܽܿ݋݈ ܼ •
alturas del mapa reconstruido respecto al punto característico de la celda 
donde se supone situado el robot. 

 ௞ corresponde a la altura medida en un elemento k de la matriz de݋ݐܽ݀݅݀݊ܽܿ ܼ •
alturas del mapa local generado a partir de una determinada celda candidata. 
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Igual que antes se aplica esta métrica a todos los mapas generados a partir de las 
celdas candidatas y se guarda la celda que presenta menor error. Esa celda será la 
óptima para esta métrica. 

b) Norma infinito aplicada a los gradientes 

࢞ࡱ ൌ ࢒ࢇࢉ࢕࢒ࢄࡳ|  െ |࢕࢚ࢇࢊ࢏ࢊ࢔ࢇࢉࢄࡳ (63) 

࢟ࡱ ൌ ࢒ࢇࢉ࢕࢒ࢅࡳ|  െ  (64) |࢕࢚ࢇࢊ࢏ࢊ࢔ࢇࢉࢅࡳ

ஶࢋ࢚࢔ࢋ࢏ࢊࢇ࢘ࢍ ࢘࢕࢘࢘ࢋ ൌ ฮሺ࢞ࡱ ൅ ሻฮ࢟ࡱ
ஶ

 (65) 

Donde: 

ܩ • ௟ܺ௢௖௔௟ y ܺܩ௖௔௡ௗ௜ௗ௔௧௢ son las matrices de gradientes según X de la 
reconstrucción local y la reconstrucción respecto a cada celda candidata 
respectivamente. 

ܩ • ௟ܻ௢௖௔௟ െ ܩ ௖ܻ௔௡ௗ௜ௗ௔௧௢ igual que las anteriores para la dirección Y. 

 es el elemento máximo de la suma de los valores absolutos de ݁ݐ݊݁݅݀ܽݎ݃ ݎ݋ݎݎ݁ •
ambas restas. 

 
c) Norma infinito aplicada a las alturas 

࢘࢕࢘࢘ࢋ ஶࢇ࢛࢚࢘࢒ࢇ ൌ ԡሺࢆ ࢒ࢇࢉ࢕࢒ െ ࢆ ሻԡஶ࢕࢚ࢇࢊ࢏ࢊ࢔ࢇࢉ (66) 

d) Combinación de las métricas a y c 

࢒ࢇ࢚࢕࢚ ࢋ࢚࢔ࢋ࢏ࢊࢇ࢘ࢍ ࢘࢕࢘࢘ࢋ ൌ ࢘࢕࢘࢘ࢋ ࢋ࢚࢔ࢋ࢏ࢊࢇ࢘ࢍ כ ࢘࢕࢘࢘ࢋ  ஶ (67)ࢋ࢚࢔ࢋ࢏ࢊࢇ࢘ࢍ

e) Combinación de las métricas b y d 

࢒ࢇ࢚࢕࢚ ࢇ࢛࢚࢘࢒ࢇ ࢘࢕࢘࢘ࢋ ൌ ࢘࢕࢘࢘ࢋ ࢇ࢛࢚࢘࢒ࢇ כ ࢘࢕࢘࢘ࢋ ஶࢇ࢛࢚࢘࢒ࢇ (68) 

Resultados obtenidos 

La Figura 69 muestra la comparación de los errores en  la localización del robot al 
describir una trayectoria arbitraria  para un entorno generado en Matlab, utilizando las 
tanto las métricas basadas en el gradiente como en la altura. 

Datos del ensayo: 

• Escala  LRM = 2 m. 

• Escala HRM = 1 m. 



UPM Enrique del Sol Acero 117 

• Estimación de error máximo de posición = 14 m de lado 

 

 

Figura 69. Comparación de errores en la estimación de la posición para dos métricas 
diferentes. 

Para un estudio de una trayectoria con  8 puntos de reconstrucción, se observa que la 
métrica basada en gradientes produce peores resultados que la basada en la 
comparación de alturas aunque es más constante.  No obstante, el error también 
depende de la calidad del mapa de alta resolución utilizada para la localización, ya que 
es más sensible al número de puntos de colisión la reconstrucción del gradiente que la 
de la altura. 

5.3. Algoritmo basado en reconstrucción a nivel subcelda 

Una vez encontrada la celda que posee el menor error de entre todas las celdas 
candidatas se puede proceder a ejecutar el algoritmo con precisión subcelda. Este 
proceso es similar al anterior pero se debe realizar una reconstrucción considerando 
como punto de referencia de las celdas una serie de puntos de referencia de 
subceldas tal y como indica la Figura 70. 

El objetivo de este proceso es ajustar aun más la posición del robot por medio de 
pruebas eligiendo el punto cuya prueba resulte mejor.  
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Para ello se divide la celda tomada en el primer paso en 9 puntos: 

 

 

 

 

 

 

 

 

A continuación, se realizarán reconstrucciones de las medidas tomadas por la matriz 
del láser suponiendo situado al robot en cada uno de esos 9 puntos. Así, tomando 
como origen el punto característico de la celda, la distancia del origen a cada punto 
será la distancia que se introducirá en la matriz de traslación para representar la 
reconstrucción respecto a dicho punto característico. La justificación es idéntica al 
caso de SLAM principal. 

Cuando se ha obtenido el punto de menor error pueden ocurrir dos casos distintos: 

• Que el punto de menor error sea el central, luego se considerará que se ha 
llegado a un mínimo y se para la búsqueda dando ese punto como 
coordenadas del robot. 

• Que el punto de menor error sea uno de los 8 periféricos. En ese caso se 
plantea una nueva búsqueda tratando de minimizar los errores hasta llegar a 
un punto de mínimo error. 

Para el segundo caso se procede a buscar el punto de mínimo error entre los 3 puntos 
adyacentes a uno periférico. 

 

 

 

 

 

 

Figura 70. Puntos de referencia a 
nivel subcelda. 

Figura 71. Puntos de referencia 
laterales. 
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Como se puede apreciar  en la Figura 71, cada punto de la periferia posee 3 puntos de 
acceso inmediato. La nueva búsqueda se centrará en esos 3 nuevos puntos 
intentando minimizar con ello el error que se cometía anteriormente. Este proceso 
cíclico podría converger a un mínimo y hacer muy pequeño el error encontrando de 
esa forma la posición actual del robot. El proceso está basado en ir desplazando la 
búsqueda por la dirección de menor error. No se garantiza con ello que se llegue al 
mínimo absoluto puesto que este podría presentarse aislado, pero es una forma de 
intentar mejorar la estimación producida por el primer método.  

En la práctica se depende mucho de las capacidades de cómputo, por ello no es 
conveniente dejar el proceso iterar constantemente, sino que es preferible elegir un 
número de iteraciones permitidas, y finalizando estas se dará por terminada la 
búsqueda y se escogerá el punto de menor error de los encontrados como mínimo.  

Resultados obtenidos  

En las siguientes pruebas se ha permitido una única iteración con lo que el 
desplazamiento del mínimo podría darse hasta el borde de la celda únicamente. 

 

Figura 72. Comparación de los algoritmos de nivel celda y subcelda 

Datos del ensayo: 

• Escala  LRM = 2 m. 

• Escala HRM = 1 m. 

• Tamaño del cuadrado de celdas candidatas = 14 m de lado 
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Se aprecia como con frecuencia el algoritmo de nivel subcelda mejora sensiblemente 
los resultados del nivel celda, por lo que la estimación de la posición del robot es 
mejor.   

En general, se observa que cuanto más abrupto es el entorno sobre el que se ejecuta 
el algoritmo, mejores resultados se obtienen. Así, en un terreno prácticamente plano 
sin objetos de tamaño importante alrededor, el algoritmo de localización como es 
lógico pierde su eficacia. Este hecho no se puede considerar en si un problema, ya 
que la pérdida de señal GPS se produce habitualmente porque grandes objetos 
“hacen sombra” al receptor del robot y por lo tanto, deben existir objetos en las 
cercanías del robot. 

5.4. MÉTODO SIFT 

Introducción 

La búsqueda de imágenes coincidentes es fundamental en multitud de problemas de 
visión por computador, incluyendo reconocimiento de objetos en un escena, resolver 
estructuras 3D de múltiples imágenes, correspondencia estéreo y otros. En este 
capítulo se describirán características de imágenes que tienen algunas propiedades 
que las hacen adecuadas para la coincidencia entre diferentes imágenes de un mismo 
objeto o escena. Las características son  invariante ante el escalado y rotación y 
parcialmente invariante ante cambios en la iluminación y punto de vista de cámara 3D. 
Están muy bien localizadas tanto en el dominio espacial como en el dominio de la 
frecuencia reduciendo las probabilidades de oclusión o ruido. Un gran número de 
características pueden ser extraídas de imágenes típicas con algoritmos eficientes. De 
hecho las características son altamente distintivas, lo que permite a un único punto 
característico ser encontrado entre una gran base de datos de puntos característicos 
dando las bases para el reconocimiento de objetos dentro de una escena [13]. 

El coste de la extracción de estas características esta minimizado haciendo un  
desarrollo de filtros en cascada en los que las operaciones más costosas se 
desarrollan únicamente a los puntos que pasan el test inicial. Las principales etapas 
para generar el set de imágenes son: 

• Detección de extremos en el espacio de escalas: la primera etapa en la 
búsqueda computacional busca sobre todas las escalas y emplazamiento de 
las imágenes. Esta implementada de forma eficiente mediante una diferencia 
de funciones gaussianas para identificar potenciales puntos de interés que son 
invariantes ante escala y orientación. 

• Localización de puntos característicos: en cada emplazamiento de los 
candidatos, se busca un modelo detallado para determinar el emplazamiento y 
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la escala. Los puntos característicos son seleccionados en base a medidas de 
su estabilidad. 

• Asignación de orientación: una o más orientaciones son asignadas a cada 
punto característico basadas en direcciones del gradiente de la imagen. Todas 
las operaciones siguientes son realizadas teniendo en cuenta que la imagen ha 
sido transformada respecto a su orientación, escala y emplazamiento inicial, 
dando de esa forma invarianza respecto a dichas transformaciones. 

• Descripción de puntos característicos: los gradientes locales de la imagen son 
medidos a una escala seleccionada en una región centrada en cada punto 
característico. Son transformados en una representación que permite cambios 
en la forma y en la iluminación. 

Esta técnica ha sido llamada Transformación de Características Invariantes a Escala 
(SIFT) ya que transforma los datos de una imagen a coordenadas invariantes a 
escalado relativas a sus puntos característicos. 

Para emparejado y reconocimiento de imágenes, los puntos SIFT son primeramente 
extraídos de un set de imágenes de referencia y almacenados en una base de datos. 
Entonces, para una nueva imagen, se le extraen sus características de forma 
individual y se la compara con las características almacenadas en la base de datos 
encontrando puntos característicos candidatos basándose en la distancia euclídea. 

Los descriptores de puntos característicos son altamente distintivos, lo que permite a 
un único punto característico ser encontrado con alta probabilidad dentro de una gran 
base de datos. Sin embargo, en una imagen recargada habrá muchos puntos 
característicos  pertenecientes al fondo que no podrán ser marcados dentro de la base 
de datos haciendo crecer con ello los resultados falsos en lugar de los correctos. Las 
coincidencias correctas  podrán ser filtradas del set completo identificando 
subconjuntos de puntos característicos que son congruentes con el emplazamiento del 
objeto, la escala y la orientación de la nueva imagen. La probabilidad  de que varios 
puntos característicos coincidan en esos parámetros de casualidad es mucho menor 
que para un punto característico individual. La determinación de esos grupos 
consistentes puede ser realizada rápidamente mediante una eficiente tabla hash 
implementada gracias a la transformación de Hough generalizada [13]. 

Cada juego de 3 o más características que concuerdan en un objeto y su pose es 
estudiada de forma más profunda para su verificación detallada. Primeramente se 
realiza una estimación por mínimos cuadrados para afinar la pose del objeto. 
Cualquier otra característica de la imagen consistente con esa pose será identificada, 
y las demás serán descartadas. Finalmente una computación detallada es realizada en 
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base a la probabilidad de que un set particular de características indique la presencia 
de un objeto, dando la precisión de la búsqueda y un número de las coincidencias 
falsas probables. Los objetos que pasan todas estas pruebas podrán ser identificados 
correctamente con una alta probabilidad [13]. 

5.4.1. Detección de extremos en el espacio de escalas 

Como se ha descrito anteriormente, se detectan puntos característicos usando una 
serie de filtros en cascada, lo que provee de eficientes algoritmos para identificar 
emplazamientos de candidatos que serán examinados profundamente. 

La primera etapa de la detección de puntos característicos será identificar 
emplazamientos y escalas que puedan ser asignadas de forma repetitiva bajo 
diferentes vistas de un objeto. La detección de  lugares que son invariantes ante 
cambios de escala de una  de una imagen puede ser realizada buscando 
características estables a través de todas las posibles escalas, usando una función 
continúa de escalado conocida como espacio de escalas.  

La función de espacio de escalas es definida como una función ܮሺݔ, ,ݕ  ሻ, que seߪ
produce de la convolucion de gaussianas de escala variable, ܩሺݔ, ,ݕ  ሻ con una imagenߪ
de entrada ܫሺݔ,  :ሻݕ

,ݔሺܮ ,ݕ ሻߪ ൌ ,ݔሺܩ ,ݕ ሻߪ כ ,ݔሺܫ  ሻݕ
( 29) 

Donde el כ indica operador convolucion en ݔ e ݕ, además 

,ݔሺܩ ,ݕ ሻߪ ൌ
1

2 ߨ ଶߪ ݁ିሺ௫మା௬మሻ/ଶఙమ ( 70) 

Para detectar de forma eficiente puntos característicos estables en el espacio de 
escala se ha propuesto la utilización de extremos de la función de diferencias 
gaussianas convolucionadas con la imagen, ܦሺݔ, ,ݕ  ሻ, la cual puede ser calculada aߪ
partir de la diferencia de dos escalas sucesivas separadas por un factor k: 

,ݔሺܦ ,ݕ ሻߪ ൌ ൫ܩሺݔ, ,ݕ ሻߪ݇ െ ,ݔሺܩ ,ݕ ሻ൯ߪ כ ,ݔሺܫ ሻݕ ൌ ,ݔሺܮ ,ݕ ሻߪ݇ െ ,ݔሺܮ ,ݕ  ሻߪ
( 71) 

Hay un gran número de razones para elegir esta función. En primer lugar es una 
función particularmente eficiente de computar, así como las imágenes suavizadas, L, 
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necesarias para la búsqueda de características en el espacio de escalas y D puede 
ser calculada por una simple extracción de imágenes. 

 

Figura 73. Extracción de características en cada octava. Adaptada de David G. Lowe [13]. 

Además, la diferencia de gaussianas provee de una aproximación cercana a la función 
normalizada en escala Laplaciana de Gaussiana, ߪଶ׏ଶܩ, como fue estudiado opr 
Linderberg (1994). Linderberg mostró que la normalización de la Laplaciana con el 
factor ߪଶ es necesaria para una verdadera invarianza en escala. En comparaciones 
detalladas experimentales, Mikolajczyk (2002) encontró que el máximo y el mínimo de 
 produce la mayor cantidad de características estables coomparandolo con una ܩଶ׏ଶߪ
gran cantidad de otras posibles funciones aplicadas a imágenes como el gradiente, 
Hessiana, o función de esquinas de Harris. 

La relación  entre ܦ y ߪଶ׏ଶܩ puede ser fácilmente entendida gracias a la ecuación de 
difucion del calor siendo ݐ ൌ  .ଶߪ

ܩ݀
ߪ݀

ൌ  ଶ ( 72)׏ߪ

Por ello, se puede ver que ׏ଶܩ puede ser computado mediante diferencias finitas 
aproximando ݀ܩ ⁄ߪ݀ , usando la diferencia de escalas cercanas en un factor ݇ߪ y ߪ: 
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ܩ݀
ߪ݀

ൌ ܩଶ׏ߪ ൎ
,ݔሺܩ ,ݕ ሻߪ݇ െ ,ݔሺܩ ,ݕ ሻߪ

ߪ݇ െ ߪ
 (73) 

Y por ello, 

,ݔሺܩ ,ݕ ሻߪ݇ െ ,ݔሺܩ ,ݕ ሻߪ ൎ ሺ݇ െ 1ሻߪଶ׏ଶܩ 
(30) 

Esto muestra que cuando la diferencia de funciones gaussianas se aplica a diferentes 
escalas mediante un factor constante ya se incorpora el factor ߪଶ de normalización de 
escala requerido por el laplaciano invariante ante escalas. 

 

Figura 74. Puntos vecinos a un punto característico. Adaptada de David G. Lowe [13]. 

5.4.1.1. Detección de extremos locales 

Para la detección de los máximos y mínimos locales de ܦሺݔ, ,ݕ  ሻ, cada punto deߪ
muestra es comparado con sus ocho vecinos de la imagen y nueve vecinos en las 
escalas superior e inferior. Es seleccionado solo sin es mayor que todos ellos o menor. 
El coste de la comprobación es razonablemente bajo comparado con el hecho de que 
la mayoría de los puntos de muestra serán eliminados en las primeras 
comprobaciones. 

Una tarea importante es determinar la frecuencia de muestreo de la imagen y los 
dominios de escala que se necesitan para realizar la detección de extremos. 
Desafortunadamente, esto muestra que no hay un espaciado mínimo entre muestras 
para detectar todos los extremos ya que estos pueden estar arbitrariamente cerca. Por 
ello se debe elegir una solución que sea un compromiso entre eficiencia con 
completitud. De hecho, como se ha comprobado experimentalmente los extremos que 
están muy cercanos entre si son muy inestables ante pequeñas perturbaciones de la 
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imagen. Se pueden determinar las mejores aproximaciones experimentalmente 
estudiando un rango de frecuencias de muestreo y usando aquellas que proporcionan 
los resultados más satisfactorios [13]. 

5.4.1.2. Frecuencia de muestreo en la escala 

La determinación experimental de la frecuencia de muestreo que maximiza la 
estabilidad se muestra en las figuras que siguen a continuación. 

 

Figura 75. Determinación experimental de la frecuencia de muestreo en la escala. Adaptada de 
David G. Lowe [13]. 

 

 

Figura 76. Repetitibilidad según la cantidad de suavizado a priori. Adaptada de David G. Lowe 
[13]. 
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La Figura 76 muestra los resultados para una simulación usada para examinar el 
efecto de la variación del numero de escalas por octava en la que la función de la 
imagen es muestreada para la detección de extremos. En este caso, cada imagen fue 
remuestreadas seguida de una rotación de un ángulo aleatorio y escalada por una 
cantidad aleatoria entre 0.2 y 0.9 veces el tamaño original. Los puntos característicos 
de la resolución reducida fueron buscados en la imagen original de tal forma que todas 
las escalas de los puntos característicos estuvieran presentes en la imagen analizada. 
Además fue añadido un 1% de ruido a la imagen. La línea superior del primer grafico 
muestra el porcentaje de puntos característicos que son detectados en un lugar y 
escala determinados en la imagen transformada. Para todos los ejemplos de este 
capítulo se definirá una escala de búsqueda con un factor de √2 respecto de la escala 
correcta y un lugar de búsqueda dentro de σ pixeles, donde σ es la escala de cada 
keypoint. La línea inferior en ese grafico muestra el número de puntos característicos 
que han sido marcados correctamente dentro de una base de datos de 40.000 puntos 
característicos usando el procedimiento de marcado de vecinos más cercanos. Como 
este grafico muestra, la mayor repetitividad se obtiene cuando se muestre a 3 escalas 
por octava. 

Puede parecer sorprendente que la repetitividad no continua mejorando al aumentar el 
número de escalas muestreadas. La razón para ello  es que son detectados muchos 
más extremos locales pero estos extremos son de media menos estables y por ello 
menos probables de ser detectados en la imagen transformada. Esto se muestra en el 
segundo grafico que muestra el término medio de puntos característicos 
correctamente detectados para cada imagen. El número de puntos característicos 
crece cuando crece el número de escalas muestreadas y el número total de 
coincidencias correctas también crece. Se ha determinado que el numero optimo de 
de escalas por octava que optimiza los resultados en base al coste computacional y 
eficiencia son 3 escalas por octava. 

5.4.1.3. Frecuencia de muestreo en el dominio espacial 

Así como se ha determinado la frecuencia de muestreo por octava del espacio de 
escalas se debe determinar la frecuencia de muestreo de la imagen relativa al 
suavizado de la misma.  

Sabiendo que los extremos pueden presentarse arbitrariamente juntos  debe existir un  
compromiso similar entre frecuencia y tasa de detección. La figura Figura 76 muestra 
la determinación experimental de la cantidad de suavizado a priori, σ, que se aplica a 
cada nivel de imagen antes de construir el espacio de escalas representativo de cada 
octava. De nuevo, la línea superior es la repetitividad de la detección de cada punto 
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característico, y los resultados muestran que la repetitividad continua incrementándose 
con σ. Sin embargo, hay un coste de usar una gran  σ en términos de eficiencia, por 
eso se ha tomado habitualmente el valor de σ=1.6, el cual produce una repetitividad 
optima.  

Efectivamente, si se pre-suaviza la imagen se están eliminando las altas frecuencias  
espaciales. Por ello, para hacer un uso total de la imagen esta puede ser expandida 
para crear más puntos de muestreo que los presentados de forma original. 
Habitualmente se doblará el tamaño de la imagen de entrada usando interpolación 
lineal para construir el primer nivel de la pirámide. Se asumirá que la imagen original 
tiene un nivel de suavizado previo de σ=0.5, y por ello la imagen doblada tendrá σ=1 
relativo al nuevo espaciado de pixeles. Esto significa que un nivel adicional de 
suavizado es necesario a priori para crear la primera octava del espacio de escalas. El 
doblado de la imagen incrementa el número de puntos característicos estables por un 
factor de 4, pero no se han encontrado mejoras mayores aumentando la expansión. 

5.4.2. Localización precisa de puntos característicos 

Una vez que un punto característico candidato es encontrado comparando un pixel 
con sus vecinos, el siguiente paso es realizar una búsqueda detallada de los datos 
cercanos sobre el emplazamiento, escala y radio de las curvaturas principales. Esta 
información permite rechazar puntos de bajo contraste o que estén situados de forma 
pobre a lo largo de los bordes. 

La implementación inicial de esta aproximación (Lowe, 1999) simplemente localiza 
puntos característicos en el lugar y escala de un punto central. Sin embargo, 
recientemente Brown ha desarrollado un método usando la expansión de Taylor de la 
función de espacio de escala, ܦሺݔ, ,ݕ  ሻ, centrada de tal forma que el origen sea cadaߪ
punto de muestreo: 

ሻݔሺܦ ൌ ܦ ൅
்ܦ߲

ݔ߲
ݔ ൅

1
2

்ݔ ߲ଶܦ
ଶݔ߲  (75) ݔ

Donde D y sus derivadas son evaluadas en el punto de muestreo y ݔ ൌ ሺݔ, ,ݕ  ሻ் es elߪ
offset desde dicho punto. La localización del extremo, ݔො, se determina tomando la 
derivada de esa función con respecto a ݔ e igualándola a cero, dando 

ොݔ ൌ െ
߲ଶିܦଵ

ଶݔ߲
ܦ߲
ݔ߲

 (76) 
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Figura 77. Estas figuras representan las etapas en la detección de puntos característicos. La 
imagen superior izquierda de 233x189 pixeles es la imagen original. La imagen superior 
derecha representa la localización de 812 puntos característicos de los máximos y mínimos de 
la diferencia de funciones gaussianas. Los puntos característicos se muestran como vectores 
indicando escala, orientación y emplazamiento. La imagen inferior izquierda muestra el proceso 
después de aplicar un umbral de contraste mínimo permaneciendo 729 puntos característicos. 
Finalmente tras aplicar un umbral de radio de curvatura quedan 536 puntos característicos. 
Adaptada de David G. Lowe [13]. 

 

La función de valor de los extremos, ܦሺݔොሻ, es muy útil para rechazar los extremos 
inestables con bajo contraste. Puede obtenerse de las anteriores ecuaciones, dando: 

ොሻݔሺܦ ൌ ܦ ൅
1
2

்ܦ߲

ݔ߲
 ො (77)ݔ

Habitualmente los extremos con un valor absoluto |ܦሺݔොሻ| menor de 0.03 son 
descartados (asumiendo que los valores de los pixeles en la imagen están en el rango 
[0, 1]). 
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5.4.2.1. Eliminación de  los resultados de borde 

Para estabilidad no es suficiente con rechazar puntos característicos de bajo 
contraste. La diferencia de gaussianas produce una fuerte respuesta a lo largo de los 
bordes incluso si el emplazamiento a lo largo del borde está mal determinado y por 
tanto es inestable ante pequeñas cantidades de ruido. 

Un pico pobremente definido en la diferencia de gaussianas tendrá una gran curvatura 
principal a lo largo del borde pero una pequeña en dirección perpendicular. La 
curvatura principal puede ser calculada como una matriz Hessiana H de dimensiones 
2x2, calculada en el emplazamiento y escala del punto característico: 

ܪ ൌ ൤
௫௫ܦ ௫௬ܦ
௫௬ܦ ௬௬ܦ

൨ 
(78) 

Las derivadas se estiman tomando diferencias entre los vecinos de los puntos de 
muestreo. 

Los autovalores de H son proporcionales a las principales curvaturas de ܦ. Se puede 
evitar calcular explícitamente los autovalores ya que solo interesa el cálculo de su 
cociente. Si se toma como α el autovalor mayor y β el autovalor menor. Entonces, si la 
suma de los autovalores es la traza de H y el producto es el determinante: 

 
 

ሻܪሺݐ݁ܦ ൌ ௬௬ܦ௫௫ܦ െ ሺܦ௫௬ሻଶ ൌ  .ߚߙ
(31) 

En el caso improbable de que el determinante sea negativo, las curvaturas tendrán 
diferentes signos por ello el punto será descartado como extremo. Si se toma ݎ como 
el cociente entre el autovalor mayor y el menor, de forma que ߙ ൌ  :entonces ,ߚݎ

ሻଶܪሺݎܶ

ሻܪሺݐ݁ܦ ൌ
ሺߙ ൅ ሻଶߚ

ߚߙ
ൌ

ሺߚݎ ൅ ሻଶߚ

ଶߚݎ ൌ
ሺݎ ൅ 1ሻଶ

ݎ
 

(80) 

Lo cual depende solo del cociente entre los autovalores en lugar de sus valores 

individuales. La cantidad ሺݎ ൅ 1ሻଶ
ൗݎ  es minima cuando los dos autovalores son iguales 
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y se incrementa con ݎ. Por ello para comprobar que el radio de las curvaturas 
principales es inferior a un determinado umbral, ݎ, solo se necesita comprobar: 

ሻଶܪሺݎܶ

ሻܪሺݐ݁ܦ ൏
ሺݎ ൅ 1ሻଶ

ݎ
 (81) 

Estos cálculos son muy eficientes de realizar. Lo habitual es tomar ݎ ൌ 10, lo que 
elimina los puntos característicos que tienen un cociente entre las curvaturas 
principales mayor de 10. 

5.4.3. Asignación de orientación 

Asignando una orientación consistente a cada punto característico basada en las 
propiedades locales de la imagen se puede crear un buen descriptor de puntos 
característicos que represente la orientación relativa y produzca con ello una 
invarianza frente a la rotación de la imagen.  

La escala de cada punto característico es usada para seleccionar la imagen suavizada 
de forma gaussiana más cercana en escala para que todos los cálculos se puedan 
realizar de forma invariante en escala. Para cada imagen de muestra, ܮሺݔ,  ሻ, a esaݕ
escala, la magnitud del gradiente ݉ሺݔ, ,ݔሺߠ ,ሻ, y orientaciónݕ  ሻ, es precalculadaݕ
usando diferencias de pixeles: 

݉ሺݔ, ሻݕ ൌ ට൫ܮሺݔ ൅ 1, ሻݕ െ ݔሺܮ െ 1, ሻ൯ଶݕ ൅ ሺܮሺݔ, ݕ ൅ 1ሻ െ ,ݔሺܮ ݕ െ 1ሻሻଶ (82) 

,ݔሺߠ ሻݕ ൌ tanିଵሺ
,ݔሺܮ ݕ ൅ 1ሻ െ ,ݔሺܮ ݕ െ 1ሻ
ݔሺܮ ൅ 1, ሻݕ െ ݔሺܮ െ 1,  ሻሻݕ

(83) 

Se crea de esta forma un histograma de orientación  de las orientaciones del gradiente 
de los puntos de muestra de la región de alrededor del punto característico. El 
histograma de orientación tiene 36 casillas cubriendo los 360 grados de todas las 
posibles orientaciones. Cada muestra añadida al histograma es pesado por la 
magnitud de su gradiente y mediante una ventana de pesos circular-gaussiana con un 
σ que es 1.5 veces la escala de cada punto característico. 

Los picos en el histograma de orientación corresponden a direcciones dominantes de 
los gradientes locales. Se detecta con ello el máximo pico del histograma y junto con 
cualquier otro pico que este dentro del 80% del mayor se usa para crear la orientación 
del punto característico. Por ello, para emplazamientos como múltiples picos de 
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magnitud similar habrá múltiples puntos característicos creados en el mismo lugar y 
escala pero con diferentes orientaciones. Solo el 15% de los puntos característicos 
son asignados con múltiples orientaciones, pero esto contribuye de forma significativa 
a la estabilidad de la comparación. Finalmente una parábola es encajada entre los 3 
valores del histograma más cercanos a cada pico para interpolar la posición del pico 
con mayor exactitud. 

5.4.4. El descriptor local de la imagen 

Las operaciones previas han asignado un emplazamiento a la imagen, escala, 
orientación a cada punto característico. Estos parámetros imponen un sistema de 
coordenadas local 2D repetible en el que describir la región local de la imagen y 
proporcionar con ello la invarianza ante esos parámetros. El siguiente paso es 
computar un descriptor para la imagen local que sea altamente descriptivo así como 
invariante ante posibles variaciones, como cambios en la iluminación o en el punto de 
vista. 

Una aproximación obvia sería muestrear las intensidades locales de la imagen 
alrededor del punto característico a la escala adecuada y marcarlas usando una 
medida de correlación normalizada. Sin embargo, la simple correlación de muestras de 
imágenes es muy sensible a cambios causando perdida de muestras. Una técnica 
mejor ha sido desarrollada basándose en la visión biológica, particularmente en las 
complejas neuronas del cortex visual primario.  

 

Figura 78. Representación del descriptor de puntos  característicos. Adaptada de David G. 
Lowe [13]. 

 

Un descriptor de puntos característicos se crea primero calculando las magnitudes del 
gradiente y orientaciones de cada punto de prueba de la imagen en una región 
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alrededor del emplazamiento del punto característico como se muestra en la imagen 
izquierda. Son pesados mediante una ventana gaussiana indicada por el círculo. Estas 
muestras son acumuladas en un histograma sumando los contenidos de cada 
subregión 4x4, tal y como se muestra en la imagen derecha, con la longitud de cada 
flecha correspondiente a la suma de las magnitudes del gradiente para direcciones 
cercanas dentro de la región. 

5.4.4.1. Representación del descriptor 

Las figuras anteriores muestran el cálculo del descriptor de puntos característicos. 
Primero la magnitud y orientación del gradiente de la imagen son muestreadas en 
torno al emplazamiento del punto característico usando la escala del punto 
característico para seleccionar el nivel de suavizado gaussiano de la imagen. Para 
conseguir invarianza en la orientación, las coordenadas del descriptor y orientaciones 
del gradiente son rotadas relativamente a la orientación del punto característico. Para 
mayor eficiencia los gradientes son precomputados para todos los niveles de la 
pirámide descrita en la sección anterior. Este queda ilustrado con pequeñas flechas en 
cada punto de muestreo de la zona izquierda de la figura. 

Una función de pesos gaussiana con σ igual a 1.5 veces la dimensión de la ventana 
del descriptor es usada para asignar un peso a la magnitud de cada punto de 
muestreo. Esto queda ilustrado con el círculo sobre la figura. El propósito de esta 
ventana gaussiana es evitar cambios súbitos en el descriptor con pequeños cambios 
en la posición de la ventana y dar menor énfasis a los gradientes que están lejos del 
centro del descriptor ya que están más afectados por errores de pérdida de 
información. 

El descriptor de puntos característicos es mostrado en la parte derecha de la figura ¿?. 
Permite crear histogramas de 4x4 regiones de muestreo para cambios en las 
posiciones del gradiente. La figura muestra ocho direcciones para cada histograma de 
orientación, con la longitud de cada flecha correspondiente a la magnitud de dicha 
entrada del histograma. Una muestra del gradiente en la izquierda puede convertirse 
en 4 posiciones de muestreo mientras se sigue contribuyendo de la misma manera al 
histograma en la derecha, así se consigue el objetivo de permitir movimientos para 
mayor numero de posiciones locales. 

Es importante evitar todos los efectos de borde en los que el descriptor cambia 
súbitamente cuando se cambia el suavizado de una muestra para pasar de pertenecer 
de un histograma a otro o de una orientación a otra. Por ello, se usa  la interpolación 
trilinear para distribuir el valor de cada muestra de gradiente en celdillas adyacentes 
en el histograma. En otras palabras, cada entrada en una celdilla es multiplicada por 
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un peso de 1 െ ݀ por cada dimensión, donde ݀ es la distancia de la muestra dese el 
valor central de la celdilla medido en unidades de espaciado del histograma. 

El descriptor se forma a partir de un vector que contiene los valores de todas las 
entradas de orientación del histograma, correspondiente a las longitudes de las flechas 
en la Figura 78. La figura muestra una matriz de histogramas de orientación 2x2. Los 
experimentos han demostrado que los mejores resultados se consiguen utilizando 
matrices de histogramas de orientación 4x4 con 8 celdillas de orientación en cada uno.  

Finalmente, el vector de características es modificado para reducir los efectos de 
cambios en la iluminación. 

5.4.4.2. Testeo del descriptor 

Existen dos parámetros que pueden ser usados para variar la complejidad del 
descriptor: el numero de orientaciones, ݎ, en los histogramas, y las dimensiones, ݊, de 
la matriz ݊݊ݔ de los histogramas de orientación. El tamaño del descriptor resultante es 
 ଶ. Cuando la complejidad del descriptor crece se puede discriminar mejor en una݊ݎ
gran base de datos, pero también se vuelve más sensible a distorsiones de forma u 
oclusión. 

 

Figura 79. Porcentaje de puntos característicos encajados correctamente según varía el 
tamaño del descriptor y el número de orientaciones. Adaptada de David G. Lowe [13]. 

 

La Figura 79 muestra resultados experimentales en los que el número de 
orientaciones y el tamaño del descriptor varían. El grafico fue generado para un punto 
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de vista transformado en el cual una superficie plana es girada 50º alejándose del 
punto de vista frontal y añadiendo un 4% de ruido a la imagen. Esto se encuentra 
cerca de los límites de la búsqueda eficiente, y es precisamente en estos casos 
difíciles donde se requiere alta eficiencia en el descriptor. Los resultados muestran el 
porcentaje de puntos característicos que se encajan correctamente con el vecino más 
cercano entre una base de datos de 40.000 puntos característicos. El grafico muestra 
que histogramas con una única orientación (n=1) son muy poco discriminantes, pero 
los resultados continúan mejorando hasta tener una matriz de 4x4 de histogramas de 
orientación con 8 orientaciones. Después de esto, añadir más orientaciones o un 
descriptor mayor pueden incluso empeorar los resultados haciéndolos más sensibles a 
distorsiones.  

Búsqueda de correspondencias en grandes bases de datos 

 Una característica importante para la medida de la diferenciación de características es 
como varia la eficiencia de la búsqueda en función del número de elementos en la 
base de datos que son comparados.  

 

Figura 80. Eficiencia según el número de puntos característicos almacenados en la base de 
datos. Adaptada de David G. Lowe [13]. 

La Figura 80 muestra como la eficiencia varía en función del tamaño de la base de 
datos. La línea discontinua inferior muestra la porción de características de la imagen 
para las cuales el vecino más cercano de la base de datos fue marcado 
correctamente, mostrando el tamaño de la base de datos de forma logarítmica. El 
punto más a la izquierda está marcado únicamente frente a una única imagen, 
mientras que el punto del lado derecho esta marcado contra una base de datos de 
todas las características de 112 imágenes. Se puede apreciar como la eficiencia del 
marcado no decrece en función del número de elementos de distracción, por lo que 
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todo indica que el éxito de las operaciones surge aunque se aumente mucho el 
tamaño de la base de datos. 

La línea continua muestra el porcentaje de puntos característicos que han sido 
identificados correctamente en la imagen transformada. La razón de que esta línea 
sea horizontal es que el test fue ejecutado sobre una base de datos repleta para cada 
valor, mientras que solo se variaba la porción de datos usada para los elementos 
distractores. Es de interés que el hueco entre las dos líneas sea pequeño, indicando 
que todos los fallos del emparejamiento se deben más a problemas con la función de 
localización inicial y asignación de orientación que problemas de diferenciación, 
incluso con tamaños muy grandes de bases de datos. 

5.5.  PRUEBAS REALIZADAS CON SLAM VISUAL A TRAVÉS DEL 
MÉTODO SIFT 

El método SIFT  es un método de reconocimiento de características de una imagen 
invariantes frente a cambios en la escala, rotaciones y parcialmente invariantes ante 
cambios en la iluminación y en el punto de vista tridimensional. Este algoritmo se 
puede aplicar para el reconocimiento de objetos dentro de una escena o a la 
localización de un determinado objeto dentro de otra imagen, o a una multitud de 
aplicaciones de la visión por computador. 

 

Sin embargo, la aplicación a la localización de un robot del método SIFT es 
aparentemente más sencilla que la funcionalidad original puesto que los datos que se 
tienen de partida son dos mapas donde los cambios que se producen de una imagen 
respecto a la original son aparentemente menos significativos que en la aplicación 
para  reconocimiento de imágenes.  

La  idea principal reside en la comparación de dos mapas mediante el algoritmo visual 
SIFT. Los dos mapas que se van a comparar extrayendo sus características serán el 
mapa global de baja resolución (LRM) y el mapa local que se reconstruirá tomando 
como referencia el propio robot (Mapa local auxiliar). Al igual que en las técnicas de 
localización por métodos de comparación numéricos que se han comentado en 
apartados anteriores se necesita la representación local del robot como punto de 
partida para la búsqueda. Esta vez no es necesario ni conveniente realizar la 
reconstrucción respecto al punto característico de la celda donde el robot cree estar 
como se realizó en el caso anterior. 
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En este caso, no se van a superponer dos matrices para realizar la comparación, sino 
que se utilizaran otros tipos de algoritmos para identificar la posición del robot relativa 
a los puntos característicos encontrados en ambos mapas y así localizar el robot. 

La idea básica para aplicar el método SIFT a la localización del robot se basa en 
encontrar una serie de puntos de la representación local en el interior del mapa global. 
Conseguido esto es sencillo posicionar al robot, puesto que al saber las distancias 
relativas del robot a un punto de su mapa local podría calcular su posición en el mapa 
global mediante la aplicación de la escala correspondiente y la equivalente distancia 
sobre el mapa global. Por ejemplo: 
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Figura 81. Esquema del offset utilizado en los cálculos de localización 
por comparación analítica de mapas 

Figura 82. Ejemplo de posicionamiento conocida la distancia y el ángulo a un punto 
característico 
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Si se logra encontrar la correspondencia entre dos puntos característicos de ambos 
mapas mediante el método SIFT, conociendo la posición relativa del punto 
característico local respecto del robot es serán conocidos por tanto la distancia y el 
ángulo de dicho punto al robot. Conociendo la posición del mismo punto en el mapa 
global, basta realizar una transformación lineal mediante el cociente de escalas  para 
hallar la posición actual del robot en el interior del mapa global. 

Para mayor precisión se puede repetir el cálculo con todos los puntos característicos 
equivalentes encontrados y hallar el punto medio de todas las posiciones del robot 
obtenidas y tomar la media como posición estimada de salida del bloque de SLAM 
visual. 

5.5.1. Aplicación del método SIFT a las estructuras de mapas 

El método SIFT es un método de reconocimiento de características de imágenes, por 
tanto necesita una imagen como entrada. Una imagen es fundamentalmente una 
matriz de tres capas donde cada elemento corresponde a un pixel y cada capa lleva 
asociado  un valor de intensidad de cada color, para los colores rojo, verde y azul 
(RGB).  

Las matrices con las que se trabaja en el mapeado del robot llevan información sobre 
el terreno en forma de valores numéricos reales. Lo más lógico parece ser trabajar con 
las capas de alturas o gradientes porque representan una información que es 
fácilmente comparable con el mapa recibido como entrada a priori para el 
funcionamiento del robot. No tendría mucho sentido trabajar con la imagen de la señal 
GPS si puede cambiar con el tiempo con cierta frecuencia, o no es conocida hasta que 
el robot llega a un determinado punto. Tampoco parece lógico trabajar con la capa de 
confianza puesto que es el robot quien rellena esa capa en función de la forma en la 
que impacta el láser sobre el terreno. Por lo tanto interesa trabajar con información 
que se pueda obtener a priori con cierta precisión como la capa de alturas. 

Como requisito de entrada para el algoritmo SIFT se requiere que la imagen sea una 
imagen en escala de grises normalizada, por lo tanto los valores de cada pixel tienen 
que ser números positivos en el intervalo [0, 1]. Es fácil normalizar los valores de la 
capa de alturas para que cumplan esos requisitos mediante las siguientes 
operaciones: 

݊݁݃ܽ݉ܫ ൌ ݊݁݃ܽ݉ܫ െ min ሺ݊݁݃ܽ݉ܫሻ ( 84) 
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݊݁݃ܽ݉ܫ ൌ
݊݁݃ܽ݉ܫ

maxሺ݊݁݃ܽ݉ܫሻ ( 85) 

Tras estas operaciones la matriz queda normalizada y se ajusta perfectamente a las 
condiciones de entrada.  

Hay que tener en cuenta que los mapas con los que se trabaja habitualmente en las 
simulaciones tienen unas dimensiones típicas del orden de 100x100 hasta 500x500, 
con lo que tomados como imágenes representan un tamaño que es relativamente 
pequeño para las imágenes habituales que se utilizan hoy en día. Por ese motivo esto 
va a producir que el algoritmo se ejecute de forma más rápida que la diseñada para el 
uso original. Esto es un punto a favor, pero hay otro muy importante en contra 
relacionado con el pequeño tamaño y detalle de la imagen que será discutido más 
adelante. 

Al igual que ocurría con el algoritmo de celdas, realizado por medio de métricas y 
búsqueda del mínimo desarrollado en el apartado anterior, donde se reducía el ámbito 
de búsqueda del mapa, aquí ocurre lo mismo. Se debe reducir el área de búsqueda en 
el interior del LRM a un cuadrado donde la probabilidad de que se encuentre el robot 
sea muy elevada acotando las dimensiones con el error máximo esperable por parte 
de la fusión de la odometría con los sensores inerciales. Se habían utilizado unos 
valores de േ 7 metros en el apartado anterior en cuanto al error máximo admisible, por 
lo que el cuadrado a utilizar tiene 14 m de lado. Se utilizarán aquí otras dimensiones 
superiores por lo que el mapa local a buscar dentro del LRM podría tener la siguiente 
forma: 
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Figura 83. Reconstrucción de un mapa local utilizando una única medida del láser 

 

Mientras que el LRM donde se va a realizar la búsqueda posee la siguiente estructura: 

 

Figura 84. LRM con indicación de la zona reconstruida de forma local 
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En este caso, el robot se encuentra situado donde indica la punta de flecha por lo que 
la reconstrucción parcial realizada con una única medida del láser corresponde a esa 
área.   

Debido a que el reconocimiento de imágenes debe funcionar en un área mayor que las 
técnicas de comparación con métricas se debe establecer un área de búsqueda mayor 
para que la imagen tenga suficiente información para la búsqueda de puntos 
característicos. Se puede establecer por ejemplo un área de 200x200 metros de 
búsqueda, quedando ambos mapas de la forma que se muestra a continuación: 

 

Figura 85. Eliminación del área de la imagen que se escapa del error máximo admisible por el 
sistema de posicionamiento odometría-ins 

Se aprecia como la imagen de la izquierda corresponde al mapa de baja resolución 
global donde se han eliminado las zonas alejadas de la posición del robot una 
distancia mayor de un cuadrado de 200 m de lado. Esto se hace para que habiendo 
suficiente información en la imagen no se interfiera en la búsqueda de puntos 
característicos con zonas de la imagen donde es imposible que el robot este 
emplazado. 

5.5.2. Configuración de los parámetros del método SIFT 

Para los ensayos realizados se ha utilizado una implementación del descriptor SIFT 
realizada por Andrea Vedaldi  para la Universidad de California en Los Ángeles cuyo 
uso es libre con fines educacionales y de investigación [14]. 

La implementación está diseñada para producir resultados compatibles con la versión 
de Lowe y está diseñada para el entorno de Matlab. Dicha implementación se divide 
en dos partes diferenciadas, SIFT detector y SIFT descriptor. El primero de ellos 
extrae de la imagen una colección de de puntos característicos y el segundo se 
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encarga de hacer una descripción extensa del entorno de cada punto característico, 
consiguiendo mediante canonización que el descriptor sea invariante frente a 
traslaciones, rotaciones y escalado y siendo robusto frente a pequeñas distorsiones. 

El software devuelve una matriz 4 x K conteniendo la referencia a cada punto y una 
matriz 128 x K conteniendo los descriptores para cada uno. Cada referencia está 
caracterizada por  4 números que están ordenados de la siguiente forma: (x1, x2) son 
los dos primeros valores que corresponden a las coordenadas del punto característico 
respecto a la esquina superior izquierda de la imagen, σ es la escala a la que ha sido 
hallado éste y por ultimo θ que es su orientación. La esquina superior izquierda toma 
los valores (0, 0) y las coordenadas (x1, x2) pueden ser fraccionarias lo que dota al 
sistema de precisión sub-pixel. La escala σ es el nivel de suavizado en el que la 
característica ha sido encontrada. Este valor puede ser interpretado como el tamaño 
del entorno del punto característico,  el cual es visualizado como un disco de tamaño 
6σ.  Cada descriptor es un vector que describe toscamente la apariencia del trozo de 
imagen correspondiente al entorno de cada punto. Típicamente este vector tiene una 
dimensión de 128, pero este valor puede ser cambiado. 

Las posibilidades de configuración del software son múltiples, pero los valores por 
defecto han sido elegidos para emular la implementación original de Lowe. 

El detector y descriptor SIFT han sido construidos a partir de la función espacio de 
escalas gaussiana de la imagen I(x). La función de espacio de escala gaussiana 
G(x,σ) que  ha sido ampliamente descrita en apartados anteriores representa la misma 
información que I(x) pero a distintos niveles de escala muestreada de una forma 
particular para reducir la redundancia. El dominio de la variable σ es discretizado de 
forma logarítmica en O octavas. Cada octava es dividida posteriormente en S 
subniveles. La distinción entre octava y subnivel es importante puesto que a cada 
octava consecutiva los datos son espacialmente muestreados a la mitad. Las octavas 
y los subniveles son identificados por un índice de octava discreto y un subnivel s 
respectivamente. Las octavas o y los subniveles se rigen por la siguiente expresión: 

,݋ሺߪ ሻݏ ൌ ݋        ,௢2଴ା௦/ௌߪ א ௠௜௡݋  ൅ ሾ0, … , ܱ െ 1ሿ,    ݏ א ሾ0, … . , ܵ െ 1ሿ 

Donde ߪ௢ es la base del nivel de escalas. El software empleado admite los siguientes 
parámetros para las operaciones iniciales: 

• Numero de octavas: O. 

• Primera octava: índice de la primera octava ݋௠௜௡. Usualmente se toma como 0 
o -1. Tomando ݋௠௜௡ como -1 se consigue el efecto de doblar el tamaño de la 
imagen antes de computar la función de espacio de escala gaussiana. 
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• Numero de subniveles: S 

• Suavizado base: ߪ௢ 

• Suavizado a priori nominal: ߪ௡. El algoritmo asume que la imagen de entrada 
esta previamente convolucionada ሺ݃ߪ௡ כ  ሻ en oposición a I(x) y se ajustanݔሻሺܫ
los cálculos de forma adecuada. Usualmente se asume que ߪ௡ = 0.5 pixeles. 

Otros parámetros importantes del detector son: 

• Threshold: el umbral para los extremos encontrados. Extremos locales cuyo 
valor sea inferior a |ܩሺݔ,  .ሻ| son rechazadosߪ

• Edge Threshold: el umbral de borde. Si el extremo local está en un valle el 
algoritmo lo descarta por ser muy inestable. Los extremos están asociados con 
un valor proporcional a su nitidez y son rechazados si esa nitidez es inferior al 
umbral. 

Parámetros de configuración del descriptor: 

• Magnificación: el factor de magnificación m está relacionado con el tamaño de 
cada celda espacial. Cada spatial bin del histograma tiene un tamaño mσ, 
donde σ es la escala del punto característico. 

• Numero de celdas espaciales: este número define la extensión y la dimensión 
del descriptor. La dimensión es igual a ܰݏ݊݅ܤ݈ܽ݅ݐܽ݌ܵ݉ݑଶ כ  y ݏ݊݅ܤ݀݁ݐ݊݁݅ݎܱ݉ݑܰ
su extensión tiene un radio ܰݏ݊݅ܤ݈ܽ݅ݐܽ݌ܵ݉ݑ כ  2/ߪ݉

• Numero de celdas de orientación 

Los valores para los parámetros que se han usado inicialmente son los 
originalmente propuestos por  Lowe: 

 

• ܵ ൌ 3 

௠௜௡݋ • ൌ െ1 

௢ߪ • ൌ 1.6 כ 2ଵ/ௌ 

௡ߪ • ൌ 0.5 

• ܱ ൌ ሺlogଶݎ݋݋݈݂ min ሺܯ, ܰሻሻ െ ௠௜௡݋ െ 3 
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݈݀݋݄ݏ݁ݎܶ • ൌ 0.04 ሺ2 כ ܵሻ⁄  

݈݀݋݄ݏ݁ݎܶ ݁݃݀ܧ • ൌ  10 

ݏ݈݁ܽ݅ܿܽ݌ݏ݁ ݏ݈ܽ݀݁ܿ ݁݀ ݋ݎ݁݉ݑܰ • ൌ 4 

ó݊݅ܿܽݐ݊݁݅ݎ݋ ݁݀ ݏ݈ܽ݀݁ܿ ݁݀ ݋ݎ݁݉ݑܰ • ൌ 8 

ó݂݊݅ܿܽܿ݅݅݊݃ܽܯ • ൌ 3 

 

5.5.3. Ensayos realizados con imágenes  

Ensayo nº1 

Con los parámetros recomendados por Lowe se obtienen demasiados puntos 
característicos como para poder ilustrar gráficamente los resultados, pero simplemente 
cambiando el número de celdas espaciales y de orientación, situándolos ambos a 16 
celdas se obtiene un resultado muy bueno para dos imágenes de muestra. 

 

Figura 86. Búsqueda de equivalentes en imágenes con los datos del ensayo nº 1 

Se puede observar como el sistema es capaz de detectar la imagen de la izquierda en 
la imagen de la derecha, estando ambas a distinta escala. Además estando la imagen 
derecha incluida en un fondo con otro contenido independiente del logotipo que se 
intenta reconocer. Es evidente que los resultados son muy buenos con este tipo de 
imágenes aunque no es un método infalible y se producen correspondencias falsas 
que deberían ser eliminadas por algún otro método. 
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Si se modifican los parámetros de tal forma que se haga más precisa la búsqueda de 
puntos característicos sacrificando con ello el número de concordancias encontradas 
pero mejorando la exactitud de la búsqueda se obtiene el siguiente resultado: 

 

Figura 87. Búsqueda de equivalentes en imágenes utilizando parámetros más restrictivos 

Siendo los parámetros modificados los siguientes: 

• S=5 

• Numero de celdas espaciales=20 

• Numero de celdas de orientación=20 

• Magnificación=5 

 Los resultados son muy buenos tras estas modificaciones pudiendo afirmar que el 
método es muy adecuado para este tipo de imágenes. 

Los problemas que se han encontrado están relacionados fundamentalmente con la 
variación de los parámetros originales. Dependiendo de la complejidad y 
características de la imagen a analizar es conveniente modificar los parámetros 
originales de forma manual para aumentar la exactitud de los resultados. Aun no se ha 
dado con una forma automática de modificación de dichos parámetros, por lo que los 
ensayos basados en pruebas son actualmente las únicas alternativas razonables. Por 
ello surge la dificultad de implementación de este método para cualquier tipo de 
imágenes. 
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Ensayo nº 2 

En este caso, situando los parámetros de la misma forma que en el ensayo nº1, es 
decir: 

• S=5 

• Numero de celdas espaciales=20 

• Numero de celdas de orientación=20 

• Magnificación=5 

Se obtiene el siguiente resultado: 

 

Figura 88. Búsqueda de equivalentes en imágenes utilizando una imagen girada y con áreas 
eliminadas según la configuración de parámetros restrictiva  

Como se puede apreciar los resultados son increíblemente buenos y el algoritmo es 
capaz de distinguir puntos equivalentes aun cuando se produce una rotación de la 
imagen y una distorsión de ciertas zonas de la misma. Se han utilizado estos 
parámetros para la mejor representación grafica de los resultados, porque empleando 
la configuración inicial dada por Lowe, los resultados son más difíciles de verificar: 
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Figura 89. Búsqueda de equivalentes en imágenes utilizando una imagen girada y con áreas 
eliminadas utilizando los parámetros originales de Lowe 

En este último caso se aprecia que se señalan como puntos característicos validos en 
la imagen derecha zonas de las dos líneas en blanco que no tienen correspondencia 
real con la imagen izquierda, por lo tanto el algoritmo falla en algunos puntos. 
Haciendo menos exigente los criterios de comparación del descriptor se producen 
casos de identificación falsos de puntos característicos. Pero con la configuración 
expuesta anteriormente no se tenían estos problemas. 

En cualquier caso se puede concluir que ensayando la configuración adecuada de 
parámetros se puede conseguir que el reconocimiento de ciertos puntos 
característicos en una imagen sea prácticamente infalible. 

Ensayo nº3 

Utilizando la misma imagen que en el ensayo anterior se añade una  proporción de 
75% de ruido de distribución uniforme sobre la imagen original izquierda. La adicción 
de ruido se realiza mediante un conocido programa de retoque fotográfico. Se sitúan 
los parámetros según la configuración más exigente, es decir, de nuevo: 

• S=5 

• Numero de celdas espaciales=20 

• Numero de celdas de orientación=20 

• Magnificación=5 

Mientras que todos los demás permanecen idénticos a los recomendados por Lowe. 
Observando los resultados  se aprecia que la cuantía de  puntos característicos se 
reduce en gran medida sin embargo la precisión sigue siendo buena.  
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Figura 90. Búsqueda de equivalentes en imágenes  utilizando en a imagen izquierda un 75% 
de ruido uniforme. Imagen izquierda rotada y con áreas eliminadas. 

Los puntos característicos seleccionados en la imagen izquierda corresponden 
fielmente a los seleccionados en la imagen derecha, el algoritmo vuelve a dar buenos 
resultados con este tipo de imágenes aun empeorando en gran medida las 
condiciones de reconocimiento. 

 

5.5.4. Ensayos realizados con mapas en condiciones operativas 

Debido a los buenos resultados cosechados con imágenes cualesquiera obtenidas de 
la web era esperable que se mantuvieran los resultados con imágenes de contenido 
mucho más sencillo como son las matrices usadas para la reconstrucción en el 
proceso de mapeado. 

En los siguientes ejemplos se van a usar mapas similares a los usados en el apartado 
inicial donde se explicaba los principios de aplicación del método SIFT a las 
estructuras de mapas. Utilizando la configuración dada por Lowe para la comparación 
de la reconstrucción de un mapa local con el LRM recortado se obtienen el siguiente 
resultado: 
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Figura 91. Método SIFT aplicado al reconocimiento de la posición del mapa local en el interior 
del LRM 

Se puede ver claramente que los resultados son muy malos con este tipo de 
configuración. Mientras que en la imagen izquierda se detectan 2 puntos 
característicos, en la imagen derecha únicamente se detecta 1, por lo que se hacen 
corresponder ambos al mismo punto, pero ninguno de ellos está correctamente 
marcado. 

Ante estos resultados desalentadores se optó por probar las configuraciones que 
habían producido éxito en las imágenes anteriores. Los resultados fueron aun más 
negativos pues no solo no se produjo ninguna coincidencia de puntos característicos 
sino que no se detectaron puntos característicos en ninguna de las imágenes. 

Esto parece lógico si se tiene en cuenta que las configuraciones que habían producido 
buenos resultados en las anteriores pruebas con imágenes reales eran 
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configuraciones consideradas más restrictivas. Por lo tanto se decidió realizar pruebas 
con configuraciones menos restrictivas que la original de Lowe, modificando los 
parámetros de tal forma que produzcan más resultados aunque estos sean a priori de 
menor precisión. Para ello se optó por unos parámetros de los siguientes valores: 

• S=6 

• Numero de celdas espaciales=4 

• Numero de celdas de orientación=4 

• Magnificación=2 

Los resultados continúan siendo inaceptables para los mapas, no detectándose nada 
más que un único punto característico en el mapa local que se hace corresponder a un 
gran número de ellos en el LRM. Aun así ninguno de los puntos seleccionados de la 
primera imagen corresponde realmente al de la imagen derecha. Solo hay uno de ellos 
que está muy próximo, y aun considerándolo como bueno la eficacia del método dista 
mucho de la conseguida con imágenes fotográficas reales. 

 

Figura 92. Método SIFT aplicado al reconocimiento de la posición del mapa local en el interior 
del LRM con la configuración original propuesta por Lowe 

 Los ensayos de este tipo han sido muy numerosos dando todos ellos un resultado 
muy negativo. Aun cuando se producía algún atisbo de correspondencia entre ambos 
mapas se encontró que al variar de mapa local se necesitaba cambiar la configuración 
de los parámetros personalizándolo para cada uno.  
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5.5.5. Conclusiones sobre el método SIFT aplicado a la 
localización del robot 

La conclusión principal es que no se ha podido llevar a la práctica el método SIFT para 
la localización del robot utilizando la comparación de una reconstrucción local con el 
mapa global en baja resolución. Con los resultados tan positivos que se obtuvieron en 
los ensayos con fotografías reales parece lógico pensar que el método SIFT debe 
funcionar con imágenes como las de los mapas usados pero la realidad de los 
experimentos muestra otra cosa.  

Las razones más probables para el fracaso de la aplicación de esta técnica parecen 
residir en la insuficiente información que proporciona la reconstrucción de una única 
lectura del láser para ser comparada por métodos gráficos. Hay que tener en cuenta 
que este método está pensado para la comparación de imagen con un número de 
pixeles mucho mayor al número de celdas que resultan con información tras una 
lectura del láser. Por ese motivo se considera que la información es demasiado pobre, 
ya que no proporciona un contraste suficiente entre las diferentes áreas de la zona 
reconstruida. Es probable también que la tipología de los mapas simulados basados 
en parábolas dificulte aun mas las tareas de reconocimiento puesto que una parábola 
vista en planta no tiene apenas  elementos diferenciadores de contorno en su interior 
como para que el algoritmo pueda hallar elementos característicos. 

Es previsible que para futuros desarrollos basados en el método SIFT para 
localización al conseguir mejorar el realismo en la  simulación del entorno se consiga 
aumentar la concordancia de puntos característicos aumentando con ello las 
probabilidades de éxito del método en la localización. Además sería conveniente un 
intento de enriquecer el mapa local reconstruido de tal forma de poder acumular varias 
pasadas del láser con el robot estático de tal forma que se puede utilizar la información 
fusionada por todas ellas para aumentar la riqueza de la imagen y con ello el número 
de puntos característicos encontrados. 
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6. CONCLUSIONES 

En el presente proyecto se han desarrollado algoritmos de reconstrucción preparados 
para su uso en un entorno simulado por un robot que posee  un laser y GPS como 
elemento de localización principal. Además se han desarrollado herramientas para la 
simulación del entorno y las pruebas del mencionado algoritmo. 

A continuación se describen las principales contribuciones del proyecto: 

Algoritmos de reconstrucción 

Durante el proyecto se han desarrollado algoritmos de reconstrucción para entornos 
exteriores con una calidad de posicionamiento muy elevada ya que se contaba con 
GPS. Se ha comprobado el correcto funcionamiento de los mismos para las 
condiciones de simulación y como los algoritmos de fusión de la información se 
comportan de forma exitosa con el sistema de mapas, así como el traslado del mapa 
local sobre el mapa global y las interacciones entre ellos. 

Se han podido estimar los gradientes de un terreno de una forma adecuada para la 
planificación de la ruta por parte del robot, dando un nivel de ocupación adecuado para 
los requisitos del resto del proyecto NM-RS. Además se han utilizado unas técnicas 
llamadas de “asignación de libertad” para recabar información de los puntos de no 
impacto lo que proporciona un aumento de la información respecto las técnicas 
convencionales donde se desaprovechaban los datos de los mencionados puntos al 
no proporcionar información certera sobre el terreno y obstáculos. 

Se ha desarrollado un método de medición de la confianza de la información aportada 
en una celda basado en la dispersión de los puntos sobre la misma lo que introduce 
una ventaja sobre algoritmos que solo tienen en cuenta el numero de impactos totales. 

El método desarrollado de fusión de la información entre las medidas del laser y el 
HRM así como entre este y el LRM ha demostrado ser  muy eficaz para la 
actualización de la información, con una rapidez de actualización aceptable y 
parametrizable lo que le dota de gran dinamismo. Además la no necesidad de 
almacenamiento indefinido de la información es un motivo importante para la 
implementación de dicho algoritmo. 
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Algoritmos de localización 

Durante la realización de este proyecto se han probado dos métodos para ayudar al 
robot en la localización cuando se carece de señal GPS.  

El método basado en comparación de mapas ha resultado ser una ayuda importante a 
la localización en ausencia de señal GPS aunque por otro lado es más impreciso de lo 
que se había esperado inicialmente. No obstante, se produce una mejora significativa 
en la comparación a nivel sub-celda respecto a la solución aportada en la primera 
aproximación. Se abre de esta forma un campo de trabajo adicional para siguientes 
desarrollos basados en la mejora de la localización para robots equipados con GPS 
cuando se produce la falta del mismo. Se recomienda hacer un énfasis mayor en la 
definición de las métricas para la comparación de mapas y los requisitos para dicha 
comparación definiendo un nuevo sistema que penalice de forma más precisa la 
comparación de mapas descentrados. 

Por otro lado se ha probado un método aplicado a la visión por computador para la 
localización de robot en entornos exteriores (SIFT). Este método altamente potente 
con imágenes no ha dado un buen resultado para los mapas almacenados por el robot 
debido a la insuficiencia de detalle de dichos mapas. Es esperable que para entornos 
reales no se produzca tanta insuficiencia y por el contrario se dote de más realismo a 
los mapas de forma que se pueda configurar el sistema para la localización de puntos 
característicos de forma fiable. Es importante señalar la potencia de este método y la 
necesidad de una mayor investigación para su aplicación al posicionamiento de robots. 
Es probable que aumentando la información contenida en el mapa local realizado en 
una pasada del laser mediante la fusión de 2 o más pasadas con el robot estático se 
mejoren los resultados del algoritmo de localización visual. 
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8. ANEXOS 

ANEXO I: ESTRUCTURQA DE DESCOMPOSICIÓN DEL PROYECTO 

En la siguiente figura se muestra la descomposición del proyecto europeo NM-RS y la 
división en módulos del mismo. El proyecto fin de carrera presente se ha basado en el 
desarrollo de parte del módulo M45. 

A continuación se detallan los elementos del módulo M45, destacando con borde 
negro los elementos desarrollados en el presente proyecto final de carrera. 

 

 

La gestión del proyecto consiste en planificar el proyecto al comienzo del mismo y 
realizar un seguimiento y control durante toda la duración del mismo. Este proyecto se 
ha realizado mediante reuniones enmarcadas dentro del proyecto NM-RS. 
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ANEXO II. PLANIFICACIÓN. DIAGRAMA DE GANTT. 
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ANEXO III. PRESUPUESTO 

A continuación se detalla el presupuesto del proyecto realizado, hay que tener en 
cuenta que los cálculos son aproximados, para considerar que el desarrollo del 
software realizado no solo se  amortizarán en el presente proyecto sino que se utilizará 
en otros proyectos. 

 

Concepto   Valor  
  

Inmuebles:    
Alquiler laboratorios     12.000,00 €  
Mantenimiento y Servicios       3.000,00 €  
Subtotal     15.000,00 €  

Equipos hardware    
PCs       2.000,00 €  
Comunicaciones           500,00 €  
Mantenimiento           500,00 €  
Subtotal       3.000,00 €  

Software    
Licencias software        2.000,00 €  
Subtotal       2.000,00 €  

Personal    
Ingeniero 800 horas , 30 €/h     24.000,00 €  
Director del proyecto, 150 horas, 60 €/h       9.000,00 €  
Subtotal     33.000,00 €  

     

Total del proyecto     53.000,00 €  
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ANEXO IV. EL FILTRO DE KALMAN 

El Filtro de Kalman Discreto 

En 1960, R.E. Kalman publicó un famoso documento describiendo una solución 
recursiva a el problema de filtrado de datos lineal y discreto. Desde aquel tiempo, 
debido en gran parte a los avances en computación digital, El filtro de Kalman ha sido 
objeto de numerosas investigaciones y aplicaciones, particularmente en el area de 
navegación asistida o autónoma.  

El proceso a estimar 

El filtro de Kalman direcciona el problema general de tratar de estimar el estado 
א ݔ  ܴ௡ de un proceso discreto en el tiempo que es gobernado por una ecuación 
diferencial  lineal y estocástica : 

 
ൌ ݇ݔ ݇ݔܣ  – 1 ൅ ݇ݑܤ ൅ ݇ݓ – 1                                       (86) 

 
 

Con una medida א ݖ  ܴ௡ que es:   

 
ൌ ݇ݖ ݇ݔܪ ൅  (87) ݇ݒ

 

Las variables aleatorias ݇ݓ y ݇ݒ representan el ruido del proceso y de la medida 
respectivamente. Se asume que son independientes una de la otra, blancas y con una 
distribución de probabilidad normal 

 
ሻݓሺ݌ ׽ ܰሺ0, ܳሻ 
ሻݒሺ݌ ׽ ܰሺ0, ܴሻ                    

(88) 

 
 

En la práctica, la matriz de covarianza del ruido Q y la matriz de covarianza de la 
medida R pueden cambiar a cada paso o medida, sin embargo aquí asumiremos que 
son constantes. 

 

La matriz A n x n  en la ecuación diferencial anterior relaciona el estado en el paso 
anterior k-1 con el estado en el estado actual k, en ausencia de ruido. Pero en la 
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practica A puede cambiar con cada paso, pero aquí asumiremos que es constante. La 
matriz B de dimensiones n x l relaciona la entrada de control א ݑ  ܴ௟ con el estado x. 
La matriz H de dimensiones m x n en la ecuación de la medida relaciona el estado con 
la medida ݇ݖ . En la práctica H puede cambiar con cada paso o medida, pero aquí la 
consideraremos contante otra vez.  

Los orígenes computacionales del filtro 

Se define la variable ݔො௞
א ି  ܴ௡ (notese el signo menos) siendo es estado a priori al 

paso k mostrando el conocimiento del proceso a priori al paso k, y ݔො௞ א   ܴ௡ será el 
estado estimado posteriori en el paso k con la medida ݇ݖ. Se puede definir los errores 
de los estados a priori y a posteriori de la siguiente manera: 

݁௞ 
ି ؠ   ௞ݔ  

ି െ ො௞ݔ 
ି  , y ݁௞ ؠ ௞ݔ െ ො௞ݔ  

 
(89) 

 

La covarianza del error estimado a priori es entonces: 

௞ܲ 
ି ൌ ሾ݁௞ܧ

ି݁௞
ି ்] , (90) 

 

y la covarianza del error estimado a posteriori es: 

௞ܲ ൌ ሾ݁௞ܧ ݁௞
்]. (91) 

 

Derivando de las ecuaciones del filtro de Kalman, se comienza con el objetivo de 

encontrar una ecuación que calcule el estado estimado a posteriori ݔො௞   como una 
combiacion lineal de un estado a priori y una diferencia ponderada entre la medida 

actual ݇ݖ y la predicción de la medida ݔܪ௞ 
–  tal y como se muestra en (92). 

ො௞ݔ  ؠ  ො௞ݔ   
ି ൅ ݇ݖሺܭ െ ௞ݔܪ

– ሻ (92) 

 

La diferencia ቀ݇ݖ െ  ௞ݔܪ 
– ቁ es llamada innovación en la medida, o residuo. El residuo 

relfeja la discrepancia entre la predicción de la medida ݔܪ௞ 
–  y la medida actual ݇ݖ. Un 

residuo nulo indicaría que las dos están en completo a acuerdo. 
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La matriz K de dimensiones n x n de (92) es elegida de tal forma que la ganancia K 
minimice la covarianza del error a posteriori (91). Esta minimización puede ser llevada 

a cabo sustituyendo (92) en la definición de ݁௞  , sustituyendo todo ello en (91) 
desarrollando las operaciones indicadas, derivando el resultado respecto a K, 
igualando el resultado a cero y resolviendo para K.  

௞ ൌܭ  ௞ܲ 
ܪሺ்ܪି ௞ܲ

்ܪି ൅ ܴሻିଵ 

ൌ  ௞ܲ 
்ܪି

ܪ ௞ܲ
்ܪି ൅ ܴ

 
(93) 

 

Observando (93) se puede ver que cuando la covarianza del error se aproxima a cero, 
la ganancia K hace el residuo mas pesado. Especificamente: 

lim
ோೖ ՜଴

௞ܭ ൌ  ଵ (94)ିܪ

 

Por otro lado, al aproximarse la covarianza del error estimado a priori ௞ܲ 
– a cero, la 

ganancia K pondera el residuo con menos fuerza. Especificamente: 

lim
௉ೖ

ష՜଴
௞ܭ ൌ 0 (95) 

 

Otra forma de ver la aportación de K seria ver como según la covarianza de la medida 
del error R se aproxima a cero, la medida actual ݇ݖ  es mas confiable, mientras la 

medida predicha ݔܪො௞ 
–  es  cada vez menos fiable. Por otro lado, asi como la covarianza 

del error estimado a priori ௞ܲ 
– se aproxima a cero la medida actual ݇ݖ es cada vez 

menos  fiable, mientras la predicción de la medida ݔܪො௞ 
–  es cada vez mas fiable. 

 

Los orígenes probabilísticos del filtro 

La justificación para (91) viene de la probabilidad para un estado estimado a priori ݔො௞
ି 

condicionado por todas las medidas a priori ݇ݖ (Regla de Bayes). Por ahora es 
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suficiente con señalar que el filtro de Kalman mantiene los dos primeros momentos de 
la distribución del estado. 

E[ݔ௞ ] = ݔො௞ 

E[(ݔ௞ െ ௞ݔො௞ሻሺݔ െ ො௞ሻ்ሿݔ ൌ ௞ܲ 
(96) 

 

La estimación del estado a posteriori (91) refleja la media (el primer momento) de la 
distribución del estado, que tendrá distribución normal si las condiciones de (88) se 
verifican. La covarianza de la estimación del error a posterior (90) refleja la varianza de 
la distribución del estado, en otras palabras 

p(ݔ௞| ݇ݖ ) ׽ N(E[ݔ௞ ], E[(ݔ௞ െ ௞ݔො௞ሻሺݔ െ  ො௞, ௞ܲሻ (97)ݔ)ො௞ሻ்ሿ = Nݔ

 

El algoritmo del Filtro de Kalman discreto 

Esta sección comenzará describiendo de forma breve la operación de alto nivel de una 
forma de filtro de Kalman discreto. Despues, se centrará en las ecuaciones especificas 
para este tipo de filtro. 

El filtro de Kalman estima un proceso usando una forma de control realimnetado: es 
filtro estima el estado de un proceso en un tiempo determinado y después obtiene 
relaimentacion en la forma de medidas con cierta cantidad de ruido. Por ello, las 
ecuaciones del filtro de Kalman forman dos grupos: ecuaciones actualizadas con el 
tiempo y ecuaciones actualizadas con la medida. Las ecuaciones actualizadas con el 
tiempo son responsables de proyectar hacia adelante (en el tiempo) el estado actual y 
la estimación de la covarianza del error para obtener una estimación a priori por el 
siguiente paso de tiempo. La actualización de las ecuaciones de la medida son 
responsables de la realimentación. Por ejemplo, por incorporar una nueva medida en 
una estimación a priori para obtener una estimación a posteriori mejorada. 

Las ecuaciones actualizadas con el tiempo también pueden ser entendidas como unas 
ecucaciones predictivas, mientras que las ecuaciones de actualización de la medida 
pueden ser entendidas como unas ecuaciones de corrección. De hecho la estimación  

final del algoritmo crea un algoritmo de predicción-correccion para resolver problemas 
numéricos. 
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Las ecuaciones especificas para la actualización con el tiempo y con la medida son las 
siguientes: 

Ecuaciones actualizadas con el tiempo para el filtro de Kalman discreto 

ො௞ݔ
ି ൌ ො௞ିଵݔܣ ൅  (98) ݇ݑܤ

 

௞ܲ
ି ൌ ܣ ௞ܲିଵ்ܣ ൅ ܳ (99) 

 

Notese de nuevo como las ecuaciones actualizadas con el tiempo proyectan las 
estimaciones del estado y la covarianza desde el paso k-1 hasta el paso k. A y B son 
desde (86), mientras que Q viene de (88).  

Ecuaciones actualizadas con la medida para el filtro de Kalman discreto 

௞ ൌܭ  ௞ܲ 
ܪሺ்ܪି ௞ܲ

்ܪି ൅ ܴሻିଵ (100) 

ො௞ݔ ൌ ො௞ݔ  
ି ൅ ݇ݖ௞ሺܭ െ ௞ݔܪ

– ሻ (101) 

௞ܲ ൌ ሺ1 െ ሻܪ௞ܭ ௞ܲ
ି (102) 

 

La primera tarea durante la actualización de la medida es calcular la ganancia de 

Kalman, ܭ௞ . Notese que la ecucacion dada aquí como (100) es la misma que en (93). 
El siguiente paso es actualizar la medida del proceso para obtener ݇ݖ  y entonces 
generar una estimación del estado a posteriori incorporando la medida como se 
muestra en (101). De nuevo  (101) es simplemente (92) repetida aquí para 
completitud. El paso final es obtener una estimación de la covarianza del error a 
posteriori via (102). 

Despues de cada par de actualización de tiempo y medida, el proceso es repetido con 
la estimación previa a posteriori usada para proyectar o predecir unos nuevos valores 

Actualización temporal 
“Prediccion” 

Actualizacion con la 
medida 

“Corrección” 

Figura 93. Ciclo del filtro de Kalman discreto 
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estimados a priori. Esta característica recursiva es una de las mas atractivas del filtro 
Kalman, y que hacen del mismo que las implementaciones practicas sean mucho mas 
factibles que en otro tipo del filtros como el de Wiener que esta diseñado para operar 
con todos los datos directamente en cada estimacion . El filtro de Kalman en lugar de 
eso opera de forma recursiva desde el estado anterior. 

Parámetros del filtro y ajuste 

En la implementación actual del filtro, la covarianza del ruido de la medida R es 
usualmente medida de forma anterior al funcionamiento del filtro. Medir la covarianza 
del error de la medida es generalmente posible porque se necesita medir el proceso 
en cualquier caso por ello se deben tomar diversas muestras off-line para determinar 
la varianza de la medida. 

La determinación de la la covarianza del ruido del proceso es generalmente mas difícil 
porque usualmente no se tieen la habilidad de observar el proceso que se esta 
estimando. A veces un modelo relativamente simple puede producir resultados 
aceptables si uno “introduce” cierto grado de incertidumbre en el proceso 
seleccionando Q adecuadamente. Ciertamente en ese caso se puede esperar que las 
medidas del proceso sean factibles. 

En otro caso, tanto si se tiene o no base racional para la elección de los parámetros, a 
menudo se puede obtener un rendimiento varias veces superior ajustando los 
parámetros Q y R del filtro. El ajuste es realizado normalmente off-line, frecuentemente 
con la ayuda de otro filtro de Kalman en un proceso referido a la identificación del 
sistema. 

 

 

 

 

 

 

 

 

 

 

ො௞ݔ
ି ൌ ො௞ିଵݔܣ   ൅  ݇ݑܤ 

Actualizacion con el tiempo 
(“Prediccion”) 

(1) Proyectar el estado hacia 
adelante 

(2) Proyectar la covarianza del 

௞ ൌܭ  ௞ܲ 
ܪሺ்ܪି ௞ܲ 

்ܪି ൅  ܴሻିଵ 

ො௞ݔ ൌ ො௞ݔ
ି ൅ ݇ݖ௞ሺܭ െ  ௞ݔܪ 

– ሻ 

Actualizacion con la medida 
(“Correccion”) 

(1) Calcular la ganancia de 
Kalman 

(2) Actualizar la estimación con 

la medida ݇ݖ 

(3) A t li l i d l

Figura 94: Ciclo completo del filtro de Kalman con ecuaciones de actualización 
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Para completar hay que dejar notar que bajo ciertas condiciones donde Q y R son de 

hecho constantes, la estimación de la covarianza del error ௞ܲ  y la ganancia de Kalman 

 ,௞   se estabilizarán rápidamente y entonces permanecerán constantes. En ese casoܭ
estos parámetros pueden ser pre-calculados ejecutando el filtro off-line, o por ejemplo 

determinando el valor del estado estacionario de ௞ܲ . 

Es frecuente sin embargo el caso de que el error en la medida no permanezca 
constante. Por ejemplo, cuando las balizas de avistamiento en seguidores 
optoelectronicos para paneles de techo, el ruido en las medidas de las balizas 
cercanas  será mas pequeño que en las balizas lejanas. Tambien, el ruido del proceso 
Q es a menudo cambiado de forma dinámica durante la operación del filtro, 

haciéndose ܳ௞  para ajustarse a diferentes dinamicas.  Por ejemplo, en el caso del 
seguimiento de la cabeza de un usuario de un entrono virtual 3D se puede reducir la 

magnitud de  ܳ௞  si el usuario parece moverse de forma lenta, e incrementar la 

magnitud si la dinámica empieza a cambiar rápidamente. En cuyo caso ܳ௞  debe ser 
elegida tomando en cuenta ambas incertidumbres sobre las intenciones del usuario y 
la incertidumbre del modelo [15]. 

 

EL FILTRO DE KALMAN EXTENDIDO (EKF) 

El proceso a estimar 

Como se describe en secciones anteriores, el filtro de Kalman resuelve el problema de 
intentar estimar el estado א ݔ  ܴ௡ de un proceso discreto en el tiempo que es 
gobernado por una ecuación diferencial lineal y estocástica. Pero, ¿que ocurre si el 
proceso a ser estimado es no lineal o si la relación de la medida con el proceso es no 
lineal?. Algunos de las mas interesantes y existosas aplicaciones del filtro de Kalman 
se encuentran en estas situaciones. Un filtro de Kalman linealizado en la media y 
covarianzas actuales es denominado el filtro de Kalman extendido o EKF. 

Haciendo algo parecido a las series de Taylor, se puede linealizar la estimación 
alrededor del estado actual usando derivadas parciales del proceso y de las funciones 
de medida para calcular estimaciones incluso en relaciones no lineales. Por ello, se 
debe comenzar modificando algunas de las ecuaciones antes expuestas. Asumamos 
que en el proceso otra vez existe un vector de estado א ݔ  ܴ௡, pero que ahora el 
proceso es gobernado por una ecuación diferencial estocástica no lineal 

௞ݔ ൌ ݂൫ݔ௞ିଵ,ݑ௞, ௞ିଵݓ ൯ (103) 
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con una medida א ݖ  ܴ௠ que es: 

       

௞ݖ ൌ ݄൫ݔ௞,ݒ௞൯ (104) 

 

Donde las variables aleatorias  ݓ௞  y  ݒ௞ vuelven a representar el ruido del proceso y de 
la medida como en (93) y (94). En este caso la función no lineal f en la ecuación 
diferencial (103) relaciona el estado en el estado anterior k-1 con el estado en el punto 
actual k. Esto incluye como parámetros cualquier función ݑ௞ y el ruido de media cero 
 ௞ conݔ ௞ . La función no lineal h en la ecuación de la medida (104) relación el estadoݓ 
la medida ݖ௞ . 

En la practica no se conocen los valores del ruido  ݓ௞  y  ݒ௞  en cada paso de 
ejecución. Sin embargo se pueden aproximar los vectores de estado y de medida sin 
ellos de la forma: 

෤௞ݔ ൌ ݂൫ݔො௞ିଵ,ݑ௞, 0൯ (105) 

௞ݖ̃ ൌ ݄൫ݔො௞,, 0൯ (106) 

 

Donde ݔො௞, es alguna estimación a posteriori del estado. 

Es importante notar que un fallo fundamental del EKF es que las distribuciones de 
varias variables aleatorias dejan de ser normales después de caer bajo 
transformaciones no lineales. El EKF es simplemente un estimador del estado que 
aproxima la optimalidad de la regla de Bayes por linearización.  

Los orígenes computacionales del filtro 

Para estimar un proceso con relaciones no lineales con la medida comenzaremos 
escribiendo unas nuevas ecuaciones de gobierno que linealizan un estimador sobre 
(104)  y (106), 

݇ݔ ൎ ෤௞ݔ  ൅ ௞ିଵݔሺܣ െ ො௞ିଵሻݔ ൅  ௞ିଵ       (107)ݓܹ

݇ݖ ൎ ௞ݖ̃  ൅ ௞ݔሺܪ െ ෤௞ିଵሻݔ ൅  ௞ିଵݒܸ

 

(108) 

                                         
Donde, 
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 son los vectores del estado actual y de la medida ݇ݖ y ݇ݔ •

 ௞ son los vectores de aproximación del estado y de la medida de (105) yݖ̃ ෤௞ yݔ •
(106) 

 ො௞ es la estimación a posteriori del estado en el paso kݔ •

• Las variables aleatorias ݓ௞ y ݒ௞ representan el ruido del proceso y el ruido de 
la medida como en (88) . 

• A es la matriz Jacobiana de derivadas parciales de f respecto a x, esto es 

ሾ௜,௝ሿܣ ൌ
߲ ሾ݂௜ሿ

ሾ௝ሿݔ߲
ሺݔෝ݇, ,௞ݑ 0ሻ (109) 

 
 

• W es la matriz Jacobiana de derivadas parciales de f respecto a w, 

 

ሾܹ௜,௝ሿ ൌ
߲ ሾ݂௜ሿ

ሾ௝ሿݓ߲
ሺݔෝ݇, ,௞ݑ 0ሻ (110) 

 

• H es la matriz Jacobiana de las derivadas parciales de h respecto a x, 

ሾ௜,௝ሿܪ ൌ
߲݄ሾ௜ሿ

ሾ௝ሿݔ߲
ሺݔ෥݇, 0ሻ (111) 

 
 

• V es la matriz Jacobiana de las derivadas parciales de h respecto a v 

ሾܸ௜,௝ሿ ൌ
߲݄ሾ௜ሿ

ሾ௝ሿݒ߲
ሺݔ෥݇, 0ሻ (112) 

 
 

Notese que por simplicidad en la notación no se usa el subíndice k con las Jacobianas 
A, W, H y V, incluso cunado estas sean diferentes en cada paso temporal. 
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Ahora se definirá una nueva notación para el error de predicción, 

݁̃௞  ؠ ௞ݔ െ ෤௞ݔ , (113) 

 

y el residuo de la medida, 

݁̃௭ೖ ؠ ௞ݖ െ ௞ݖ̃  (114) 

Recuerdese que en la practica no se tiene acceso a ݇ݔ en (113), puesto que es la 
cantidad que se esta tratando de estimar. Por otro lado no se tiene acceso a ݇ݖ en 
(114) ya que es la medida actual que se utiliza para tratar de estimar ݇ݔ. Usando (113) 
y (114) se puede escribir las ecuaciones que gobiernan el proceso de error como 

݁̃௫ೖ  ൎ ௞ିଵݔ൫ܣ   െ ො௞ିଵ൯ݔ ൅  ௞ (115)ߝ

 

݁̃௭ೖ  ൎ ൫݁̃௫ೖܪ ൯ ൅  ௞ (116)ߟ

Donde ߝ௞ y ߟ௞ representan nuevas e independintes variables aleatorias de media cero 
y matrices de covarianza ்ܹܹܳ y ்ܸܸܳ, con Q y R como en (88) . 

Notese que las ecuaciones (115) y (116) son lineales y recuerdan a las ecuaciones en 
diferencias del filtro de Kalman discreto. Esto hace que se piense en usar el residuo de 
la medida ݁̃௭ೖ  en (116) como segundo filtro de Kalman para estimar el error de 

predicción ݁̃௫ೖ  dado por (117). Este estimador, llamado ݁̂௞, podría ser usado junto con 
(115) para obtener una estimación el estado a posteriori para el proceso original no 
lineal como, 

ො௞ݔ ൌ ෤௞ݔ ൅ ݁̂௞. (117) 

 

Las variables aleatorias de (115) y (116) tienen aproximadamente las siguientes 
funciones probabilísticas de distribución: 

,൫݁̃௫ೖ൯~ܰ൫0݌ ௫ೖ݁̃௫ೖ̃݁ൣܧ
்൧൯ (118) 
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,௞ሻ~ܰሺ0ߝሺ݌ ܹܳ௞்ܹሻ 
(119) 

,௞ሻ~ܰሺ0ߟሺ݌ ܸܴ௞்ܸሻ 
(120) 

 

Haciendo esas aproximaciones y dando a ݁̂௞ el valor de cero, la ecuación del filtro de 
Kalman usada para estimar ݁̂௞ es  

݁̂௞ ൌ  ௞݁̃௭ೖ. (121)ܭ

 

Y sustituyendo (121) en (117) y haciendo uso de (116) se puede ver que no se 
necesita el segundo filtro de Kalman: 

ො௞ ൌݔ ෤௞ݔ ൅ ௞݁̃௭ೖܭ  ൌ ෤௞ݔ ൅ ௞ݖ௞ሺܭ െ ௞ݖ̃ ሻ (122) 

La ecuación (122) puede ser usada ahora como actualización con la medida en el filtro 

de Kalman extendido, con ݔ෤௞ y ̃ݖ௞  viniendo de (107) y (108), y la ganancia de Kalman 
 ௞ viniendo de (94) con la sustitución apropiada para la covarianza del error de laܭ
medida. 

El juego completo de ecuaciones para el EKF será mostrado a continuación. Notese 

que se ha sustituido ݔො௞
ି por ݔ෤௞   para hacerlo consistente con el superíndice menos de 

la notación a priori, y ahora se añade el subíndice k a las Jacobianas A, W, H y V, para 
reforzar la idea de que son diferentes a cada paso de tiempo. 

Ecuaciones actualizadas con el tiempo para el EKF 

ො௞ݔ
ି ൌ ݂ሺݔො௞ିଵ, ,௞ݑ 0ሻ (123) 

௞ܲ
ି ൌ ௞ܣ   ௞ܲିଵܣ௞

் ൅ ௞ܹ ܳ௞ିଵ ௞ܹ
் (124) 

Asi como en el filtro de Kalman básico, las ecuaciones de actualización con el tiempo 
proyectan la estimación del estado y la covarianza desde el estado previo k-1 hasta el 
actual k. De nuevo f en (123) viene de (107), ܣ௞ y ௞ܹ son las Jacobianas del proceso 
en el paso k, y ܳ௞ es la covarianza del ruido del proceso en el paso k. 
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Ecuaciones actualizadas con la medida para el EKF 

௞ ൌܭ  ௞ܲ 
௞ܪି

்ሺܪ௞ ௞ܲ
௞ܪି

் ൅ ௞ܸܴ௞ ௞ܸ
்ሻିଵ (125) 

ො௞ݔ ൌ ො௞ݔ  
ି ൅ ݇ݖ௞ሺܭ െ ݄ሺݔො௞

– , 0ሻሻ (126) 

௞ܲ ൌ ሺ1 െ ௞ሻܪ௞ܭ ௞ܲ
ି (127) 

Asi como en el filtro de Kalman básico y discreto las ecuaciones actualizadas con la 
medida corrigen las estimaciones del estado y la covarianza con la medida ݇ݖ. De 
nuevo h en (126) viene de (108), ܪ௞ y ௞ܸ son las Jacobianas de la medida en el paso 
k, y ܴ௞ es la covarianza del ruido de la medida  en el paso k.  

La forma de comportarse del EKF es la misma que la del filtro de Kalman lineal, por lo 
tanto las figuras que se utilizaron anteriormente para explicar el funcionamiento del 
filtro de Kalman básico se pueden inferir ahora para el EKF [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ො௞ݔ
ି ൌ   ݂ሺݔො௞ିଵ, ,௞ݑ 0ሻ 

௞ܲ
ି ൌ ௞ܣ   ௞ܲିଵܣ௞

் ൅ ௞ܹ ܳ௞ିଵ ௞ܹ
் 

Actualizacion con el tiempo (“Prediccion”)

(1) Proyectar el estado hacia adelante 

 
(2) Proyectar la covarianza del error 

hacia adelante 

௞ ൌܭ  ௞ܲ 
௞ܪି

்ሺܪ௞ ௞ܲ 
௞ܪି

்

൅ ௞ܸ ܴ௞ ௞ܸ
்ሻିଵ 

ො௞ݔ ൌ ො௞ݔ  
ି ൅ ݇ݖ௞ሺܭ 

െ ݄ሺݔො௞ 
– , 0ሻሻ 

Actualizacion con la medida 
(“Correccion”) 

(1) Calcular la ganancia de Kalman 

(2) Actualizar la estimación con la 

medida ݇ݖ 

(3) Actualizar la covarianza del error 

Figura 95. Ciclo completo del filtro de Kalman extendido con ecuaciones de actualización 
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Una característica importante del EKF es que la Jacobiana ܪ௞ en la ecuación de la 

ganancia de Kalman ܭ௞  sirve para corregir la progagacion o magnificación solo de la 
componente mas relevante de la información de la medida. Por ejemplo, si no hay una 
correspondencia uno a uno entre la medida ݇ݖ y el estado via h, la Jacobiana ܪ௞ afecta 
a la ganancia de Kalman de tal forma que esta solo magnifica la porción del residuo 

݇ݖ െ ݄ሺݔො݇ 
– , 0) que no afecta al estado. Si ocurriera que sobre todas las medidas no 

hubiera una correspondencia uno a uno entre la medida y el estado via h entonces se 
puede esperar que el filtro diverja rápidamente. En ese caso el proceso seria 
inobservable [15]. 
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