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1.  INTRODUCCION

1.1. CONTEXTO GENERAL DEL PROYECTO

El presente proyecto se enmarca dentro de un proyecto internacional de la Agencia de
Defensa Europea (EDA) categoria B denominado Sistemas Multirobot en Red, con el
acronimo  NM-RS  (Networked  Multi-Robot  Systems) cuyo principal objetivo
es el desarrollo de un demostrador virtual que permita analizar la eficacia de la
utilizacién de sistemas multi-robot en red frente al uso de robots individuales o uso de
tropas en tareas del ambito de la defensa.

Uno de los principales objetivos de la actividad de investigacion y tecnologia de la EDA
es catalizar mas colaboraciones en proyectos de investigacion, cubriendo una amplia
gama de rangos en las tecnologias. En general, estos trabajos colaborativos entran
dentro de uno de dos tipos, segun lo establecido en la Accion Comun de la agencia [1]:

e Categoria A. Los proyectos o programas categoria A han sido propuestos por
uno o mas paises miembros o por el jefe ejecutivo de la Agencia y cuentan con
la participacion de los 26 paises miembros a menos que decidan no participar.
Un ejemplo de colaboracién de este tipo es el anterior programa de inversion
comun sobre proteccién de la fuerza.

e Categoria B. Los proyectos o programas categoria B se establecen por uno o
mas paises miembros Yy en principio estan abiertos a la participacién de todos
los paises miembros. Sin embargo, en la practica, los proyectos categoria B
tienden a involucrar un numero menor de paises miembros porque estos
decidan no entrar a formar parte.

El proyecto NM-RS esta centrado en el desarrollo de tacticas y procedimientos para
emplear nuevos sistemas robéticos en batallas, destinados a la ejecucion de misiones
durante periodos mucho mas largos que sus homodlogos ftripulados. NM-RS
proporcionara una plataforma de simulacién de sistemas compuestos de varios robots
que se mueven de forma autdbnoma supervisada, en entornos estructurados y no
estructurados. Adicionalmente, este dispositivo de simulacion proporcionara la
capacidad para entrenar y controlar sistemas no tripulados en ambientes
colaborativos.

Otra capacidad de la plataforma consiste en proporcionar al personal la capacidad
para entrenarse con los sistemas robdticos mediante e la experimentacion con las
interfaces de operacion, como por ejemplo para determinar el nimero de sistemas no
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tripulados que una ftripulacion de infanteria puede controlar bajo una variedad de
escenarios posibles. El software de simulacion sera usado en el futuro para controlar
un equipo robdtico.

Como objetivo del proyecto NM-RS, se incluye el desarrollo de algoritmos multi-robot
para la realizacion de tareas cooperativas en presencia de diferentes niveles de
comunicacion entre los robots.

Estas técnicas innovadoras permitirdn a los robots construir memorias de sus
experiencias sobre el entorno, evaluar la utilidad de las alternativas de acciones
cooperativas y entonces seleccionar acciones a realizar de tal forma que se
incremente la probabilidad de que el objetivo global se cumpla, mas alla de las
decisiones individuales de cada robot [2].

1.2. ALCANCE DEL PROYECTO FINAL DE CARRERA DENTRO DEL
NM-RS

El proyecto NM-RS tiene una arquitectura modular. Cada modulo tiene una
funcionalidad especifica, y comparte informacién con el resto de los modulos
mediante unas interfaces minuciosamente disefiadas.

Dado el gran numero de moddulos existentes en el conjunto de la aplicacién,
unicamente se van a describen brevemente los modulos indispensables para la
comprension del presente proyecto final de carrera.

El alcance del proyecto final de carrera se encuentra ubicado como parte principal del
modulo denominado “Navegacion-DataMapping” (M44).

Los principales aspectos funcionales de este mddulo consisten en realizacion de la
fusion sensorial de los sistemas de navegacion (Unidad inercial, GPS y odometria) y la
utilizacion de la solucion de navegacion junto con un sistema de laser de barrido
horizontal y vertical para la confeccion de mapas tridimensionales del entorno, esta
ultima tarea practicamente coincide con el alcance del proyecto final de carrera que
aqui se presenta.

Por otro lado, otra tarea fundamental del médulo (igualmente incluida en el alcance del
proyecto final de carrera) consiste en la utilizacion de la informacioén de los mapas y
los datos del laser para la realizacibn de un sistema de localizacién para las
situaciones en las que la precisién o disponibilidad del GPS no permita una correcta
localizacion del robot.

El moédulo M44 descrito requiere compartir informacion de otros moédulos de la
plataforma de simulacién, en concreto con los que proporcionan informacién de los
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sensores de navegacion (GSP, odometria, etc.,), el médulo que proporciona
informacion del laser tridimensional y los datos fisicos del robot.

Por ultimo, el médulo M44 proporciona como salidas a otros modulos la siguiente
informacion:

e Posicion estimada del robot.

e Posicidn estimada realizando SLAM.

e Mapa de baja resolucion actualizado.
e Mapa de alta resolucion.

e Lista de objetos dinamicos detectados.

Una representacion de alto nivel de las interfaces mencionadas podria ser la siguiente:

Datos del robot Medicion de distancia Angulos de giro
Datos Odometria
Informacién sobre Autonomia

Matriz Laser \ M44

Estimacion del estado del robot
Estimacion del estado con SLAM
Mapa de baja resolucién

Mapa de alta resolucién
Objetos dinamicos

Figura 1. Esquema a alto nivel de las interfaces del proyecto NM-RS

1.3. OBJETIVOS DEL PROYECTO

Como analisis adicional a las interfaces ya mencionadas, es necesario comprender los
niveles de fusion de informacion que se desarrollan para poder enmarcar el presente
proyecto fin de carrera dentro de la globalidad del NM-RS. Los algoritmos utilizados
reposan sobre un modelo de robdtica probabilistica donde se utiliza frecuentemente el
filtro de Kalman como herramienta para poder estimar el estado final del robot a partir
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de la estimacién actual, las medidas observadas por los sensores y la entrada aplicada
al sistema.

De esta forma, la parte principal de este proyecto utiliza como entradas informacion
procedente de fusién de datos con filtro Kalman y a su vez proporcionara como salida
otra informacién necesaria para una posterior fusion con otros filtro Kalman. Asi, el
presente proyecto es un intermediario entre dos bloques de robdtica probabilistica que
la informacion de forma determinista.

De esta forma el proyecto se enmarca de la siguiente forma:

Estimacion

A GPS - INS (EKF) de la actitud ODOMETRIA
A/Rotacién de ruedas
Control de la |
. Algoritmo de Navegacién 3D
calidad de Robot GPS-INS State
posicionamiento
GPS
A Posicidn
Supervisor EKF —» Estimacién
dela
Traccion
Modulo SLAM Robot State
Estimate
v
EKF
v
Robot Slam
Estimate

Figura 2. Integracion de los diferentes elementos del sistema de posicionamiento
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Una vez descrito el entorno de trabajo, se pasara a describir los objetivos del presente
proyecto fin de carrera.

e Creacion de un mapa local de alta resoluciéon en modelo de celdas del terreno
que incluye la siguiente informacion:

0 Modelo digital del terreno

o Estimacién de gradientes para determinar, atendiendo a los requisitos
de cada robot, si la celda es transitable o no.

o Nivel de comunicaciones y sefial GPS en cada celda
o Nivel de confianza sobre los valores almacenados en cada celda.

e Creacion de un mapa general de baja resolucion mediante la fusién de un
mapa general recibido de un sistema central y la informacion que contiene el
mapa local de alta resolucién que elabora el propio robot.

e Desarrollo un algoritmo de SLAM (Simultaneous Location and Mapping) de
forma que proporcione una estimacion adicional de la posicion del robot
basado en la comparacion de la informacion que tiene el robot del entorno
(mapa local) y la informacioén del laser. Esta tarea se desarrolla Unicamente
cuando la precision de la estimacion de posicion que proviene del GPS es de
muy baja calidad o nula. La estimacion procedente del algoritmo de SLAM se
incorpora como estimacién a un al sistema de GNC (Guiado Navegacion y
Control) basado en sensores.

1.4. EL FILTRO DE KALMAN

La localizacion basada en el filtro de Kalman es la mas extendida en la literatura y en
implementaciones practicas y debido a sus buenas propiedades, es apropiada para la
mayoria de las aplicaciones siendo la que se ha utilizado para el desarrollo del
presente proyecto.

El filtro de Kalman es un algoritmo recursivo 6ptimo para procesar informacion [3].
Combina la totalidad de la informacién disponible, ponderandola segun su grado de
incertidumbre, para realizar la estimacion de las variables que definan el estado del
sistema. El funcionamiento del filtro requiere el conocimiento de la dinamica del
sistema, asi como de los modelos estadisticos del ruido en las medidas de los
sensores y de la incertidumbre inicial del modelo del sistema. Al tratarse de un
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algoritmo recursivo, cada estimacion se efectia a partir de la anterior y de la nueva
informacién disponible, sin que sea preciso almacenar todos los datos previos.

El filtro de Kalman permite minimizar el error en la estimacion de las variables de
interés cuando el modelo es lineal y la incertidumbre del sistema y de las medidas de
los sensores es ruido blanco gaussiano. En esta situacion, la funcion de densidad de
probabilidad de cada variable a analizar condicionada a las medidas tomadas es tal
que la media, la moda y la mediana coinciden, lo que evita cualquier posible conflicto a
la hora de determinar cual es la mejor estimacion. Las hipétesis aceptadas pueden
parecer altamente restrictivas pero hacen posible la resolucion matematica del
problema y se acercan bastante bien a la realidad en la mayoria de los casos. En otros
sin embargo, han de contemplarse algunas variaciones y resulta de utilidad el llamado
filtro extendido de Kalman (EKF) [4].

Para mayor informacién acerca de las ecuaciones y el algoritmo utilizado por el filtro
Kalman consultese el anexo IV dedicado al mismo. El algoritmo basado en el filtro de
Kalman forma parte fundamental del sistema de posicionamiento del robot pero no ha
sido objeto de desarrollo por el presente proyecto fin de carrera por lo que no se hara
un comentario mas extenso del mismo.
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2. Estado del arte

2.1. CONSTRUCCION DE MAPAS DINAMICOS

2.1.1. Introduccion

Una de las claves en robdtica movil es el conocimiento y la representacion del entorno
en que se mueve el robot, en concreto, representar la existencia de obstaculos con los
cuales este puede chocar en su movimiento por el mundo.

Tradicionalmente, esa representacion o mapa del entorno era introducida en el robot
por el disefador humano. El progreso hacia una mayor autonomia en los robots
navegantes ha llevado a dotarlos de mecanismos que les permiten construir y
mantener autbnomamente esos mapas desde su propia informacion sensorial. La
mayoria de los trabajos en representacion del entorno para robots méviles dividen la
informacién en dos partes que se tratan separadamente. Primeramente un mapa
global refleja los obstaculos estaticos como paredes, armarios, etc. y permite
planificacién de largo plazo. En segundo lugar una representacion instantanea,
basicamente la ultima lectura sensorial, que permite reaccionar a obstaculos
imprevistos. En esta exposicion se comentaran varias técnicas de construccion de
mapas con la idea de mantener una representacion local al robot que capture el
dinamismo de los objetos moviles a su alrededor. Dentro de los mapas métricos se
puede distinguir entre dos tipos, el modelo de elementos geométricos vy el de celdas
de ocupacion.

En el primero se dispone de unas primitivas de representacién (puntos, esquinas,
paredes, objetos, etc.) cuya posicidon se estima constantemente desde la informacion
sensorial.

El segundo, que representa el espacio como un mallado regular de celdas cada una
de las cuales contiene la creencia en que esa posicidn en el mundo esté ocupada o
no. No necesita estructura en el entorno para conseguir una representacion adecuada
y facilita la fusién de datos sensoriales procedentes de sensores muy distintos.
Adicionalmente, este segundo modelo representa explicitamente el espacio vacio, que
resulta muy util para la tarea de sortear obstaculos.

En la Figura 3, se puede observar un ejemplo de una rejilla alrededor del robot, las
casillas oscuras indican la presencia de un obstaculo en ellas, y las claras de espacio
vacio. Para comparar las distintas técnicas de construccion de mapas dinamicos se ha
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utilizado la informacién proporcionada por los sensores sonar de un robot B21
comercial. Este tipo de sensor mide la distancia al objeto mas proximo utilizando el eco
de una onda ultrasénica y su empleo esta muy difundido en la comunidad robética. Las
técnicas descritas también se han utilizado en un robot de exteriores casero, equipado
con un sensor laser de proximidad, que proporciona medidas de ocupacion mucho
mas fiables. En ambos casos las técnicas de construccion son exactamente las
mismas, sélo se ha variado el modelo sensorial para reflejar las peculiaridades de
cada sensor [5].

Figura 3. Ejemplo de grid construido con el robot B21 (izqda.) y lecturas sonar instantaneas
(dcha.) Adaptada de José Maria Cafas y Lia Garcia, 2002. [5]

2.1.2. Fusion de la informacion

Un robot auténomo percibe el estado de su entorno a través de sus sensores. La
ultima lectura de todos sus sensores le proporciona una instantanea sobre el estado
de sus alrededores, como muestra la Figura 3. Sin fusionar lecturas siempre se tendra
esta instantanea sensorial, continuamente refrescada. Debido a su simplicidad y a su
vivacidad, esta representacion ha sido utilizada en muchos casos para construir
comportamientos reactivos sobre ella, por ejemplo el sorteo de obstaculos.

Se utiliza una rejilla para materializar la fusion de informacion procedente de multiples
lecturas sensoriales. Con una rejilla se puede recordar la informacion de zonas
proximas o zonas que de repente quedan ocluidas por un obstaculo intermedio. La
fusion también ayuda a depurar errores sensoriales y perfilar mejor el contorno de los
obstaculos, compensando las lecturas erroneas con las medidas correctas,
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previsiblemente mas numerosas. Esta compensacién es especialmente adecuada
para los sensores sonar porque sus medidas son propensas a ruidos.

Finalmente, la fusién también permite la identificacién de estimulos complejos, que no
caben en una lectura instantanea. Permite acumular indicios, evidencias parciales.
Esto resulta crucial cuando una instantanea sensorial por si sola no es concluyente
sobre la existencia de tal o cual estimulo. Un ejemplo podria ser el estimulo pared. La
ultima instantanea sonar se ve afectada por la existencia de una pared préxima o no,
pero desde esa instantanea es imposible distinguir si se trata de una pared o de
cualquier otro obstaculo. Sera la acumulacién de varias lecturas, y el alineamiento de
las celdillas ocupadas lo que permitira concluir que el obstaculo concreto es una pared

[5].
2.1.3. Escenarios y entorno

Normalmente se tendra al robot midiendo continuamente el estado de su entorno a la
vez que realiza sus maniobras. Se tendra un flujo constante de lecturas sensoriales,
no un conjunto finito y estatico. La construccion en tiempo real de una representacion
razonable ira en paralelo a la toma de decisiones sobre esa misma representacion.

Otro requisito importante es su caracter dinamico. El objetivo de los mapas del entorno
que se generan es servir de base para todos los comportamientos del robot, incluido
los reactivos. Por lo tanto deben reflejar con celeridad los cambios, tanto los nuevos
obstaculos que aparecen como los nuevos huecos que surgen cuando los obstaculos
se mueven.

Este escenario dinamico y en tiempo real es radicalmente distinto de la construccion
de mapas estaticos, donde interesa reflejar los obstaculos fijos de determinado
entorno y los mapas se pueden construir fuera de linea [5].

2.1.4. Enfoques y teorias

El problema de construccion y mantenimiento de celdas de ocupacion ha sido
ampliamente abordado en la literatura técnica especifica. En general este problema se
ha dividido en dos etapas. Primeramente se captura toda la informacion que
proporciona una nueva lectura del sensor sobre la ocupacion del espacio, siguiendo
determinado modelo sensorial. En la segunda etapa esa informacién se utiliza para
actualizar la creencia acumulada, materializando la fusibn con otras medidas
anteriores. La geometria de los modelos no se ha tenido en cuenta en la comparativa
de esta exposicién, que hace énfasis en el dinamismo de la regla de actualizacion.

En esta seccion se ha agrupado los enfoques mas representativos a la hora de
representar la creencia de ocupacién y de incorporar la informacién de nuevas

UPM Enrique del Sol Acero 17



observaciones sensoriales: el modelo probabilistico bayesiano, la teoria de la
evidencia, los conjuntos borrosos y el enfoque histogramico de Borenstein [5].

2.1.4.1. Enfoque probabilistico

El enfoque probabilistico es el mas utilizado en la bibliografia. Se asume que cada
celda del mapa puede tener unicamente uno de los dos estados: ocupada o vacia, que
se tratara de estimar desde las observaciones sensoriales acumuladas. El
conocimiento que el robot tiene en el instante t sobre la ocupacion de la celdilla situada
en (X, y) se refleja en la probabilidad de que la celdilla esté en alguno de los dos
estados posibles condicionada a las observaciones que se han obtenido hasta ese
momento. Asi lo expresa la ecuacion (1), donde data(t —1) supone el conjunto de
observaciones acumuladas hasta el instante t —1 y obs(t) la observacién actual.
Cuando la probabilidad de ocupacion es cercana a 0 entonces se esta muy seguro que
la celda esta vacia. Por el contrario cuando es préoxima a 1 entonces se tiene mucha
confianza en que esa celda esta ocupada. Inicialmente todas las casillas del grid
tienen valor 0.5, reflejando el desconocimiento total.

En desarrollos probabilisticos recientes se parte del modelo sensor a posteriori, que
marca la probabilidad de que la celdilla esta ocupada o no dado tal o cual lectura del
sonar obs(t) es decir, p(ocupadalobs(t)).

Por ejemplo en [6] se utiliza un modelo sonar que vale p(ocupadalobs(t)) = 0.4 en las
celdillas mas cercanas al sensor que el radio observado y p(ocupadalobs(t))=0.6 en
las celdillas mas o menos coincidentes con ese radio. Para celdillas mas distantes el
modelo ofrece p(ocupadalobs(t))=0.5, que no aporta ninguna informacion en el
enfoque probabilistico. Cuanto mas se acerque a los extremos de probabilidad, 0 6 1,
mas certidumbre aporta esa medida en un sentido u otro.

Actualizacion con regla de Bayes

A medida que el robot recibe nuevas observaciones sensoriales su informacion se va
incorporando al mapa, actualizando las probabilidades almacenadas y haciéndolas
evolucionar. Siguiendo el desarrollo de (1) y (2) se llega a la formulacién incremental
(3) de la regla de Bayes. Esta formulacion maneja modelo a posteriori del sensor y
ratios de probabilidad, definido como (2)

Pocupada (C(x,y), t) = p(ocupada/obs(t) ,data (t — 1))

pmapa = pocupada/(l - pocupada) (2)
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Pobs

Pmapa(Cxy) t) = * Pmapa(Cxy) t — 1) 3)

a priori

Si una lectura sonar proporciona informaciéon sobre el estado de determinada celda
Cixy) €l valor del modelo de sensor p(ocupadalobs(t)) en esa posicion determina, a
través de p,;s, Si alli la probabilidad de ocupacion sube o baja después de la nueva
observacion. El denominador p, priori Simplemente normaliza la influencia de p,ps. Si
p(ocupada = obs(t)) = p(ocupada) entonces la observacion no aporta ninguna
informaciéon adicional sobre el conocimiento a priori y la probabilidad acumulada no
cambia. Si p(ocupada = obs(t)) > p(ocupada) entonces aumenta la probabilidad
global en la ocupacion de esa celdilla. Reciprocamente, la probabilidad acumulada
disminuye cuando p(ocupada = obs(t)) < p(ocupada).

Utilizar probabilidades permite tener un marco teérico fiable a la hora de realizar
ciertas operaciones, calculos e hipdtesis con la informacién disponible. Otra ventaja
sustancial es que (3) permite una formulacion incremental, muy eficiente desde el
punto de vista de tiempo y memoria requeridas en la actualizacion.

Uno de los inconvenientes de la actualizacion con regla de Bayes es que requiere que
las distintas observaciones que se incorporan al mapa sean independientes, al menos
en sentido markoviano. Esto no siempre se puede asegurar cuando se tiene un flujo
continuo de mediciones. Otra desventaja es que no da medida alguna de confianza.

2.1.4.2. Teoria de la evidencia

La teoria de la evidencia se basa en la definicion de un campo de discernimiento O,
que es un conjunto de etiquetas que representan eventos mutuamente excluyentes.
Tal y como se describe en [7], para la aplicacion de mapas de ocupacion las etiquetas
interesantes son © = {E,F} porque las celdillas del grid pueden estar vacias, E, u
ocupadas, F. Se define también una asignacion basica de probabilidad como una
funcién m:,; ¢y — [0,1] donde Y es el conjunto de todos los subconjuntos posibles de
O, en este caso Y = {0,E,F,{E,F}}

El estado de cada celdilla se define asignando numeros de probabilidad a cada
etiqueta en y, en este caso cuatro nimeros. Sin embargo asumiendo My, q,, (@) = 0y

aplicando (4) basta almacenar dos de ellos, Myapa(E) Y Miypapq (F) para caracterizar
el conocimiento sobre la ocupacion de la celdilla en este enfoque.

El desconocimiento absoluto se refleja en m;4,q(E) =0 , Mypgpa(F) =0 y por lo
tanto myqpq(E,F) =1 . Cuando se esta seguro que una celdilla esta vacia entonces
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Mumapa(E) =1 y el resto se anula. Reciprocamente cuando se esta seguro de que
esta ocupada Mgy, (E) = 0.

La geometria de sensor que emplea [7] es un cono de propagacion. Para las celdillas
dentro del arco el modelo viene dado por (Mmgensor(F) = %,msensor(E) = 0) donde n

corresponde al numero de celdas situadas en el arco. Para las celdillas en el interior
del sector el modelo utilizado es (Mgepnsor (F) = 0, Mgensor (E) = p).

Donde p es un factor constante de ajuste que iguala la masa total de evidencia
asignada a las celdas vacias y a las ocupadas en cada lectura [5].

Meergitiary) (E) + Meergitiatey) (F) + Meeraitiaxy) (E, F) = 1 (4)

Actualizacién con regla de Dempster-Shafer

La regla de Dempster-Shafer permite combinar evidencias sobre el evento A, m;(A) y
m,(A) , que este caso serian las asignaciones basicas de probabilidad acumuladas en
cada celda del mapa para los eventos vacio E y ocupado F, y las proporcionadas por
la ultima lectura sonar. Siguiendo el desarrollo se llega por ejemplo a (6).

mfnapa (E) = (m%;alpa @ Msensor(t) ) (E) ()

mfnapa(E)
_ mfr:alpa (E)msensor(t) (E) + mfr:alpa(E)msensor(t) ({E: F}) + mfp;alpa ({E: F})msensor(t) (E) (6)
1- m;r:alpa (E)msensor(t) (F) - m%:alpa (F)msensor(t) (E)

Una ventaja de este enfoque es que contempla explicitamente la ambigliedad tanto en
las medidas como en la creencia acumulada. El factor my,q,q ({E, F}) representa la

incertidumbre almacenada. También se representa la contradiccion: una misma celdilla
puede recoger a lo largo del tiempo tanto lecturas que indican que estd ocupada

My apar)(E) como lecturas contradictorias que apuntan lo contrario m,,pq¢ (F). Si

queremos resumir la creencia en un unico valor se necesita destilar esa creencia final
convenientemente. En esa combinacion ira implicitamente una compensacion entre las
evidencias de ocupacién y vacio almacenadas en cada celdilla [5].
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2.1.4.3. Enfoque borroso

En el enfoque borroso el mapa se almacena como dos conjuntos borrosos no
complementarios: el de zonas vacias ¢ y el de zonas ocupadas o. Cada celda (x, y) del
espacio pertenece en cierta medida a cada uno de los conjuntos y esa pertenencia es
una funcion de pertenencia borrosa . (x,y), u,(x,y).

La informacién de una lectura sonar k se captura igualmente con dos conjuntos
borrosos £* y o* que reflejan precisamente la evidencia de vacio y ocupacién que
aporta esa lectura k a las diferentes celdas del espacio. Por ejemplo en [5] se utilizan
los modelos de la Figura 4.

Figura 4. Modelo borroso sonar para informacion de ocupacion (izquierda) y de vacio
(derecha). Adaptada de José Maria Canas y Lia Garcia, 2002. [5]

Actualizacién con el operador borroso unién

Los conjuntos borrosos con las creencias globales se definen como la uniéon borrosa
de las evidencias recogidas en cada lectura (7) (8). La operacion de union borrosa es
asociativa, por ello estas ecuaciones (7) y (8) permiten una implementacion
incremental, eficiente desde el punto de vista practico. En la formulacién clasica
[Poloni95] se han propuesto varios operadores de union borrosa: producto algebraico
(9), producto acotado (10), operador Dombi, operador Yager.

i=k

o~ o=l

i=1
i=k

= U= oUe

i=1
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(4 [ B) @ = 1@ + 5 = a0+ 5@ ©)

(4 [ JB) @ = min (1 uaG + 15 () )

Una de las ventajas de la aproximacion borrosa es que no necesita tantas asunciones
tedricas como el desarrollo probabilistico y se tiene mas libertad a la hora de disefar el
modelo sensorial y los operadores borrosos.

Las evidencias de ocupacion y de vacio no son contradictorias en este enfoque.
Precisamente por ello la aproximacion borrosa exhibe una mayor robustez frente a
medidas erroneas esporadicas que el enfoque probabilistico. Combinando los dos
conjuntos borrosos globales se puede distinguir entre zonas ambiguas y zonas
desconocidas, es decir, informacion contradictoria y ausencia de informacion [5].

2.1.4.4. Enfoque histogramico

El enfoque histogramico fue presentado por Johann Borenstein y Y. Koren. En él cada
celda mantiene un valor de certidumbre CV indicando la confianza en la existencia de
un obstaculo en esa posicion, que se mueve entre CV,,;, = 0y CV,qe = 15. Para
utilizar el mapa se suele binarizar la creencia de ocupacién comparando el valor
almacenado en cada celda con cierto umbral, por ejemplo 12. Sdlo las casillas con
evidencia superior se consideran realmente ocupadas.

Regla de actualizacion histogramica
La mezcla de informacion se hace empleando una regla aditiva heuristica que suma el

valor del modelo sensorial al acumulado en la celdilla.

CVij(t+1) = CV;;(8) + A(t) (8)
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Figura 5. Modelos histogramicos. Adaptado José Maria Cafas y Lia Garcia, 2002. [5]

En el trabajo de Borenstein [9] si hay un estudio explicito del caracter dinamico de la
representacion. La regla de actualizaciéon contempla la posibilidad de que la creencia
pueda cambiar completamente de sentido con un numero finito de observaciones
sensoriales. Tantas veces como se necesite e independientemente de lo confiado que
se estuviera en la creencia anterior. Se considera el numero critico de medidas
necesarias para dar una creencia por firme. Ese valor marca la velocidad maxima de
los obstaculos que puede reflejar el mapa tal y como esta construido. Otra ventaja es
que no necesita que las observaciones sensoriales sean independientes, se
incorporan todas. Tampoco se hipotetiza como se distribuyen las medidas del sensor
dada una configuracion del mundo. Es la compensacién entre unas y otras la que va
conformando la distribucién de probabilidad en el espacio.

De este enfoque derivan los desarrollos del presente proyecto, adaptandolo segun las
necesidades y simplificando determinados aspectos. Considerando la utilizacion de un
laser en lugar de un cono ultrasoénico.

2.1.5. Enfoques dinamicos

Ya se han comentado las aproximaciones mas destacadas en la literatura técnica,
ahora se describen dos procedimientos para mejorar el dinamismo en la
representacién que se consigue con los enfoques anteriores. El primer enfoque se
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basa en el grid histogramico, pero reemplazando la regla de actualizacion aditiva por
una ecuacion diferencial. En la segunda aproximacién cada celda lleva asociada una
memoria de corto plazo, en la que se van almacenando las Ultimas medidas. Se
decide el estado de la celda por mayoria sobre esa memoria.

El estado de ocupacion de cada celdilla C,,y es una variable gradual, continua, que
oscila entre un valor maximo E,,,para sefalar ocupacién y un valor minimo E,,;, =
—E,.., para sefalar certeza de vacio.

En ambos procedimientos se utiliza un modelo lobular que asigna un peso positivo
A(t) = +1 a las celdas situadas en el arco de ocupacion y un peso negativo A(t) =
—1 a las situadas en el interior del I6bulo les asigna un valor negativo para indicar
evidencia de vacio. Cuanto mayor es el valor absoluto mayor es la influencia de la
medida en esa celdilla [5].

2.1.5.1. Actualizacion con ecuacion diferencial

En este enfoque se actualiza el estado de ocupacién de cada celdilla siguiendo la
ecuacion diferencial (12). El cambio en la creencia de ocupacién seria un incremento
o decremento dependiendo del signo de A(t). La amplitud del cambio depende de
varios factores.

creencia(C (xy) t)
= creencia(Cyy), t — 1) + A(t) * saturacion(t)

* secuencia(t) * speed (9)

A(t) > 0 |Eppgx — creencia(x,y,t — 1)|} (10)

saturacton = {A(t) < 0 |Epin — creencia(x,y, t — 1)|

El factor saturacién (13), acota el valor del incremento de tal modo que nunca se
pasen los valores maximo y minimo para la creencia. Este factor hace que afectando
varias medidas con el mismo peso a la celda, las novedosas tengan mas influencia,
provoquen mas cambio en la creencia. Esto permite en la practica cambios de opinion
muy rapidos, para reflejar el posible movimiento de obstaculos. Ademas cuando se
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esta muy seguro de la ocupacion de la celdilla, nuevas observaciones en este sentido
apenas aportan informacion.

El parametro speed, entre 0 y 1, constante para todo el grid, modula la velocidad de
cambio de estado. Con el se parametriza el nimero de medidas necesarias para
cambiar totalmente de creencia, menor cuanto mayor es speed.

Finalmente el factor secuencia, entre 0 y 1, refuerza el efecto de las medidas cuando
estas aparecen seguidas, de tal manera que las medidas aisladas quedan
aminoradas. Su valor se encuentra entre 0 y 1, y se calcula sobre una pequefia
memoria de evidencias asociada a la celdilla. Si la uUltima evidencia aparece en una
secuencia de evidencias del mismo signo su influencia sera mayor que si las
anteriores son de signo contrario. En cierto modo este factor retarda el efecto de las
sorpresas hasta que se van confirmando con una secuencia de lecturas en el mismo
sentido.

La ecuacion diferencial propuesta, por su propia naturaleza ofrece un alto dinamismo
en la creencia y logra que las medidas recientes influyan en el estado de ocupacion
sistematicamente mas que las antiguas. Adicionalmente se ha incluido un mecanismo
de olvido que periddicamente (1 segundo) multiplica la creencia de todas las celdillas
por un factor olvido = 0:98. Este mecanismo acerca iterativamente la creencia de
ocupacion de todas las celdillas al estado de desconocimiento, creencia (Cy,,),t) =0

y fuerza a que estas se refresquen constantemente con nuevas observaciones.

2.1.5.2. Decision por mayoria

En cada celdilla C(, ,, se almacena, con orden temporal, la informacion que aportan las
ultimas N medidas que afectan a la celdilla: A(t — 1), A(t — 2), ... A(t — N). Sumando
los valores en memoria se tiene el peso acumulado. El peso acumulado ¥V ; peso(i)
oscila entre -N y +N. Con este peso acumulado se estima la ocupacion de la celdilla
siguiendo la funcién de la figura siguiente.
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Figura 6. Estado de ocupacién en funcion de los pesos almacenados en la memoria de la
cedilla (izda.). Latencia del enfoque por mayoria (dcha.). Adaptada de José Maria Cafias y Lia
Garcia, 2002. [5]

En el eje vertical se ve el estado de ocupacion final y en las abscisas el peso
acumulado en la memoria de la celdilla. EI umbral de ruido de la Figura 6 sehala la
cantidad minima de evidencias necesarias para empezar a creer que la celdilla no esté
libre. Este umbral inferior filtra las medidas erroneas espurreas, pues se necesita mias
de una medida para confirmar que la celdilla puede estar ocupada. Las celdillas
realmente ocupadas o vacias lo superan sin problemas acumulando enseguida
evidencias que lo respaldan.

A medida que se acumulan evidencias por encima de ese umbral, el estado de
ocupacioén crece linealmente hasta alcanzar el valor maximo en el umbral de
saturacion. Este umbral superior introduce el fenémeno de saturacion en la creencia.
Esta saturacion ecualiza las zonas del espacio por donde mas y menos tiempo se ha
movido el robot, con tal que las evidencias recogidas sean suficientes para concluir un
estado u otro de la celdilla.

Sobre una misma celdilla pueden caer varias evidencias contradictorias, de ocupacion
y de vacio. Con este enfoque se observa claramente que unas lecturas compensan a
otras. La idea aqui es que una lectura erronea no sesga la creencia frente a una
mayoria de lecturas correctas. Para modular esa compensacion el enfoque permite
asignar distintos pesos a evidencias de ocupacion, lejanas, cercanas, de vacio, etc.

Con este enfoque la inserciéon de observaciones nuevas refresca el contenido de la
memoria local, de esta manera la creencia de ocupacién esta siempre actualizada.
Adicionalmente se ha afadido un mecanismo artificial de olvido que periédicamente
inserta observaciones neutras para eliminar observaciones antiguas. Gracias a esto la
creencia acaba envejeciendo en ausencia de lecturas recientes [5].
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2.1.6. Criterio de vivacidad VS. Criterio de robustez

En la literatura existen muchas comparativas pero pocas veces se ha evaluado
explicitamente el comportamiento dinamico del algoritmo de construccion automatica
de mapas. Los enfoques mas utilizados tienen un caracter estatico subyacente en el
cual no importa demasiado la velocidad en adquirir determinada creencia de
ocupacion, mas bien su correccién. La compensacion entre medidas persigue
principalmente corregir algunas incertidumbres relativas al sensor.

En el caso de mapas dinamicos el estado de ocupacién real puede cambiar con el
tiempo, por lo tanto la regla de actualizacién ademas debe buscar compensar las
lecturas antiguas con las recientes. Se desea que la creencia cambie rapidamente si
las lecturas nuevas apuntan un cambio en el estado de ocupacion actual, para reflejar
con vivacidad los movimientos de los obstaculos. Se definen dos ratios que
caracterizan el comportamiento dinamico de los algoritmos constructores de
representacion: tiempo en incorporar obstaculo (TIO) y tiempo en incorporar hueco
(TIH), que miden precisamente el numero de medidas necesarias para que la creencia
de ocupacion confirme la ocupacién o el vacio. Para medirlos utilizaremos unas
secuencias de prueba que corresponden a observaciones que atafien a una misma
celdilla.

En contraposicion al criterio de vivacidad tenemos el de robustez frente a lecturas
inciertas. Esa compensacion necesita cierta latencia para implementarse y una sola
medida no modifica significativamente la creencia hasta que se confirma con nuevas
observaciones. Entre estos dos criterios contrapuestos el algoritmo elegido establece
un compromiso.

2.1.7. Conclusiones

Se han comentado las técnicas mas populares de construccion y mantenimiento de
mapas métricos en forma de rejilla. El enfoque probabilistico, la teoria de evidencia y
el enfoque borroso resultan invalidos para representar caracteristicas que puedan
cambiar con el tiempo (por ejemplo la ocupacién del espacio cuando hay obstaculos
moviles). La principal razén es que tanto la regla de Bayes, la regla de Dempster-
Shafer y el operador borroso de unién exhiben la propiedad asociativa: dada una
secuencia de lecturas sensoriales, el estado final de las celdillas del grid es el mismo
con independencia del orden en que se incorporen esas lecturas

El enfoque probabilistico bayesiano muestra una inercia proporcional a las evidencias
acumuladas, lo que ralentiza en exceso su cambio de creencia. En general necesita
tantas evidencias de ocupacion como de desocupacion para cambiar el sentido de su
estimacion. En la practica ofrece un mayor dinamismo debido a una limitacién practica
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que obliga a manejar valores de probabilidad en el intervalo [§,1 — §]. Esta restriccion
desvirtua todas las asunciones de probabilidad hechas y no forma parte explicita del
formalismo bayesiano.

La teoria de la evidencia deriva en los mismos resultados que la probabilistica una vez
que se incorpora un reducido numero de lecturas iniciales. Después de esas medidas
la ambigledad en la estimacion my,,,(E,F) se anula y la evolucion de ambos
enfoques es similar. Las mismas restricciones se aplican.

El enfoque borroso clasico presenta un bloqueo inaceptable tras incorporar un
pequefo nimero de lecturas sensoriales. No funciona bien si se tiene un flujo continuo
de medidas. La razon de este bloqueo radica que el operador borroso de union sea
una funciéon monaétona creciente. Existen nuevas teorias dentro de este enfoque que
proponen nuevos operadores borrosos que superan este bloqueo y lo acercan a una
sencilla media aritmética.

Por el contrario el enfoque histogramico, de decision por mayoria y el basado en
ecuacion diferencial si refleja el dinamismo de la realidad. Todos ellos distinguen entre
secuencia, Yy secuenciag, €l estado final es distinto en ambos casos. En estos
enfoques por muy seguro que se esté que tal celdilla esta ocupada, basta un numero
relevante de lecturas en sentido contrario para cambiar radicalmente de creencia. Este
dinamismo de representacion es imprescindible para representar obstaculos méviles y
resulta util incluso con obstaculos estaticos si se arrastran errores de localizacion. El
uso de técnicas estaticas obliga a mantener una localizacion absoluta precisa, para no
mezclar evidencias de distintas celdillas.

El perfeccionamiento de los procedimientos descritos debe pasar por segmentar el grid
dinamico de ocupacién y a utilizar las técnicas dinamicas para detectar puertas sin
localizacion absoluta fiable [5].

2.2. Localizacion y mapeado simultaneo

2.2.1. Introduccion

Un robot moévil debe conocer donde se encuentra dentro de un entorno para poder
navegar de forma auténoma e inteligente. La auto-localizacién y el conocimiento del
emplazamiento de otros objetos requiere la existencia de un mapa y este
requerimiento basico ha propiciado el desarrollo de los algoritmos de localizacion y
mapeo simultaneos “SLAM” (Simultaneous Location and Mapping) durante las dos
décadas pasadas, en los que el robot construye un mapa mientras explora el entorno.

La forma predominante de SLAM hasta dia de hoy es SLAM estocastico introducido
por Smith [10]. EI SLAM estocastico tiene en cuenta de forma explicita los errores
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introducidos por las medidas tomadas por los sensores: los errores en las medidas
introducen incertidumbres en la estimacion del emplazamiento de marcas, las cuales
se tornan en incertidumbre en la localizacién del robot, por ello la estimacion de la
posicién de las marcas y del robot son dependientes.

La mayoria de implementaciones practicas del SLAM representan dichas
incertidumbres y correlaciones mediante la funcién de densidad de probabilidad
gaussiana (PDF), y propagan dichas incertidumbres mediante el filtro de Kalman
extendido (EKF). Esta forma de SLAM es conocido como EKF-SLAM. Un problema
con el EFK-SLAM e que requiere modelos de marcas basados en formas geométricas
para tener en cuenta los datos medidos lo que limita las aproximaciones a entornos en
los que dichos modelos no sean adecuados [11].

2.2.2. Tipos fundamentales de SLAM

Un tema importante dentro del EKF-SLAM es el diseino del modelo de observacion.
Las implementaciones actuales requieren como se ha dicho la utilizacién de formas
geométricas para modelar la observacion, tales como lineas, circulos esplines. Las
medidas deben encajar en alguna de las categorias geométricas disponibles para ser
clasificadas como un punto caracteristico y los datos que no encajen con ninguna son
desechados. El principal problema, es que tienden a ser especificos del entorno por el
que se desplace el robot por ello un modelo que se comporte bien en un determinado
entorno puede no funcionar en otro y desperdiciar una gran cantidad de informacion.

Una alternativa a los modelos de caracteristicas analiticas es el procedimiento llamado
“scan correlation”, basado en calcular la maxima probabilidad de alineamiento entre
dos medidas en bruto de los sensores.

Dado una serie de medidas observadas, escaneres realizados por el robot 0 mapas
locales y un mapa de referencia es posible que el robot se localice sin convertir sus
medidas a ningun tipo de forma geométrica. Las observaciones son sencillamente
alineadas con los datos del mapa de forma que se maximice las correlaciones de las
medidas. El método scan correlation ha sido ampliamente usado cuando se posee un
mapa a priori del entorno mediante el algoritmo iterated closet point (ICP) mediante
rejillas de ocupacion siendo el mas popular de los métodos usados. Este tipo de
algoritmos estan basados en un método iterativo donde se calcula en primer lugar las
correspondencias entre escaneos y posteriormente se trata de minimizar el error en la
distancia para calcular el desplazamiento del sensor. Este proceso es repetido con
una nueva estimacion hasta la convergencia. Una caracteristica comun a la mayoria
de versiones de ICP es el uso de la distancia euclidea para establecer
correspondencias y aplicar minimos cuadrados. Sin embargo, esta distancia no toma
en cuenta el hecho de que los puntos lejanos al sensor pudieran encontrarse lejos
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debido a rotaciones en el propio sensor. Para superar esto se ha propuesto el calculo
de dos tipos de correspondencias, una es la distancia euclidea y otra la distancia
angular (para capturar la rotacion del sensor). La ganancia en precision es perdida en
complejidad y convergencia ya que estos métodos realizan dos procesos de
emparejado o “matching” y minimizacion para cada iteracion. Se entiende que estos
son los dos principales problemas para los algoritmos ICP: encontrar una forma
adecuada de medir la cercania y aplicar la minimizacion.

Dos métodos importantes han sido presentados para realizar el SLAM mediante scan
correlation. El primero, usa la maximizacién de la esperanza (EM) para maximizar la
correlacion entre escaneos lo que resulta en un set de estimaciones sobre la posicion
del robot que producen un alineamiento éptimo entre todos los escaneos. El segundo
método, llamado estimacion consistente de la posicion (CPE), acumula una historia
seleccionada de escaneos y alineamientos formando una red.

El principal inconveniente con los métodos existentes para SLAM aplicando scan
correlation es que no realizan la fusién de datos, y en lugar de ello se requiere de una
serie de escaneos almacenada y que no son compatibles con la forma tradicional de la
formulacién de EKF-SLAM.

Otro método bastante novedoso denominado Scan-SLAM que intenta solventar las
deficiencias de ambos métodos siendo idéntico al convencional EKF-SLAM excepto
en la definicion del modelo de marcas, que esta comenzando a ser usado. En este
modelo las marcas son definidos mediante una plantilla con los datos del sensor en
bruto: los observados mediante un proceso de scan-matching. Este proceso da lugar a
un modelo genérico de observacion basado en la localizacién de un sistema de
coordenadas local embebido en cada plantilla de marcas. Las plantillas también
facilitan una estrategia de asociacién de datos [11].
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3. Tipos y estructuras de los mapas usados. Datos
de partida.

De todas las formas comentadas en el estado del arte, en este proyecto se impuso la
utilizaciéon de mapas de celdas con varios niveles. Se basan en dividir el terreno cuya
informacién se quiere representar en celdas. Estas celdas tendran asociado un valor
numérico dependiendo de la informacion que representen. De esta forma cada celda
representa un area de la superficie y se asigna un uUnico valor numérico para toda la
superficie. Por este motivo son consideradas con dos dimensiones y media, donde no
se pueden representar objetos como tuneles, puentes u objetos con voladizos.

i
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Figura 7. Mapa de celdas

Un mapa de celdas a varios niveles es una estructura de varias capas donde cada
capa almacena un tipo distinto de informacion.

Esta estructura a varios niveles es parametrizable, permitiendo almacenar la
informacién definiendo un tamano global del entorno y un tamafio de la celda.
Dependiendo de la extension de terreno que se necesite abarcar se podra definir el
tamano de la celda como se desee teniendo en cuenta que cuanto mas grande sea
ésta, menor precision presenta.

3.1. DESCRIPCION GENERAL DE LA ESTRUCTURA MAPA.

Como se ha justificado anteriormente, para almacenar diferentes tipos de informacion
se ha definido una estructura de mapa de celdas en diferentes niveles.
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Logicamente, la informacién procesada y generada a medida que avanza la
reconstruccion, y tanto para operaciones y calculos intermedios como para la
presentacion final de los datos se utilizaran estructuras formadas por distintos tipos de
datos, como numeros enteros, numeros en coma flotante o incluso estructuras.

Como requisito del proyecto se requiere la utilizacién de mapas discretos formados por
celdas de tamarno determinado por las condiciones de cada ensayo que se desee
realizar. Para tomar una idea del orden de magnitud de las dimensiones de cada
celda, podremos tomar de 0.5 a 1.5 m las dimensiones del lado para las celdas de los
mapas de alta resolucion y de 2 a 10 m las dimensiones del lado de una celda de los
mapas de baja resolucion.

Todas las celdas de un mismo mapa presentan la misma dimension. No se utilizan
celdas irregulares ni una division en funcién del area de interés.

Tal y como se ha mencionado, existen fundamentalmente dos tipos de mapas, de alta
resolucion y de baja resolucion. La unica diferencia reside en el espacio fisico real que
ambos pueden representar. En el mapa de baja resolucién se representa en principio
la informacion correspondiente a todo el entorno de simulacién del robot, mientras que
en el mapa de alta se representa la informacion detallada de una zona del mapa
cercana en distancia al robot.

Se han definido tres tipos de mapas:

¢ Low Resolution Map Global: mapa global inicial en baja resolucion. Representa
el conocimiento previo que se tiene del terreno y es la informacién de partida
del robot. Segun se va realizando la reconstruccion, este mapa aglutina las
reconstrucciones parciales realizadas por los diferentes robots.

e Low Resolution Map: es una copia local (en cada robot) del anterior, que
realiza el robot al inicio de su operacion. Todas las actualizaciones que este
haga sobre el terreno se realizan en el LowResMap.

¢ High Resolution Map: es el mapa local en alta resolucion.

La estructura de forma general para ambos tipos de mapas es la que sigue a
continuacion:
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Calidad del GPS

Figura 8. Estructura general de los mapas

A continuacion se estudiara detenidamente la estructura de los mencionados mapas:
e Numero de filas y columnas: describe la dimension de la matriz de celdas.
e Escala: tamafo en metros de la celda (son cuadradas)

e Centro: coordenadas UTM (Universal Transverse Mercator) del centro del
mapa. Como punto de referencia de una celda se considera la esquina inferior
izquierda de ésta. Para determinar la celda central, es necesario hacer
distincién para los casos en los que el nimero de filas o columnas sea par o
impar, para ello:

Siendo (i., j.) los indices de la celda central del mapa, y llamando Sym,1 Y Syme al
numero de filas y columnas del mapa, se pueden presentar los siguientes casos:

_ SNm1

Que Sy, Sea un numero par. La celda central estara en lafila i, = i 1.

. . . . S +1
Que Sy, Sea impar. La celda central estara en la fila i, = =¥,

Asi tenemos los siguientes ejemplos:
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Figura 9. Ejemplos de situacion del centro del mapa

Como ejemplo para ilustrar la idea se puede observar a continuacién una matriz de 6
filas y 4 columnas con el centro situado en la celda (3,3).

1,1 1,2 1,3 1,4
2,1 2,2

Centro

0 del

3,1 3,2 Mapa
4,1 4,2
51 5,2 5,3 5,4
6,1 6,2 6,3 6,4

Figura 10. Sistemas de referencia asociados al mapa

e Capas: en los siguientes apartados se hara una extensa descripcion de la
funcionalidad de cada capa.
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3.2. CONVERSION DE COORDENADAS A CELDA EN EL MAPA

De forma general, y sin tener en cuenta el tipo de mapa, se utiliza un sencillo algoritmo
para hacer corresponder a cada punto en su correspondiente celda del mapa. Aunque
este proceso sera detallado en los apartados dedicados a los algoritmos, para la
correcta comprension del funcionamiento de los mapas es necesario saber algun
detalle sobre este proceso.

Considerando un punto del mapa (Xp,Yp) Y un mapa definido por el centro cuya posicion
es (Xo,Yo0), Yy €l tamafno de la celda defino por el parametro “escala”, las distancias al
centro vendrian definidas de la siguiente forma:

Ax = x, — X, (11)

Ay =y, — Yo (12)

Los indices de la matriz de celdas “i, j° correspondiente a las distancias (Ax, Ay) son:

=X+ int( ) VAx > 0 (13)
escala
j=X,+ int( —1) VAx < 0 (14)
escala
o . Ay (15)
i =Y, + int (escala) VAy >0
A
i=Y0+int( 4 +1> VAy >0 (16)
escala

3.3. ESTRUCTURA MULTICAPA DE CELDAS

A continuacion se describen la informacién correspondiente a las diferentes capas del
mapa de celdas.
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Es importante considerar que el algoritmo que se ha desarrollado puede funcionar de
forma robusta, partiendo de una informacion inicial imprecisa o incompleta o bien sin
contar con ningun tipo de informacion de partida.

3.3.1. Altura

Uno de los objetivos principales de la reconstruccion del terreno es obtener una
representacion lo mas real posible del terreno y de los obstaculos presentes en él. Al
tratarse de un en sistema multi-robot, todos ellos colaboran de una forma
descentralizada o centralizada en la composicion de un mapa global que incluye la
fusion de la informacion que proviene de todos los robots participantes en la
simulacién (que han tenido capacidad de comunicarse con los demas o con el puesto
central).

Por ello, cada robot se ocupa de actualizar el area del mapa correspondiente a la zona
por la que transita, compartiendo las actualizaciones realizadas para un conocimiento
comun de todos los robots.

La reconstruccion de las elevaciones y depresiones del terreno es parte fundamental
del proyecto, siendo datos de partida para el calculo posterior de los gradientes y con
ellos el nivel de ocupacién o de accesibilidad del terreno. No se hace ninguna
distincién entre terreno y otros obstaculos presentes como edificios, estructuras,
vehiculos, otros robots, etc.

Cada celda del mapa tiene asociado un valor numérico de la altura, que correspondera
basicamente con la altura media de todos los puntos observados en el interior de ella,
ponderando dicha informacion con la estimacion de la precision en la observacion de
dicho punto de colision.

Como ejemplo se puede observar el mapa que viene a continuacion, resultado de la
reconstruccion de un pequefio numero de celdas en alta resolucion:
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200 250

Figura 11. Reconstruccion de la altura de un terreno

En principio, el tipo de dato almacenado en cada celda es un niumero en coma flotante,
de tal forma que es valido para valores reales de las alturas. Estas alturas son
calculadas siempre en su valor absoluto, utilizando para ello el sistema fijo de
referencia, es decir, tanto los mapas de alta resolucién locales del robot como los
mapas de baja resolucion global tienen la misma referencia en cuanto a orientacién y
origen.

3.3.2. Gradientes

Las capas de gradientes tienen como objeto almacenar la estimacion de las
pendientes del terreno para cada celda segun orientaciones de los ejes principales X
e Y, Los gradientes son calculados siempre respecto a ejes fijos. Asi, el gradiente
segun X mide la variacion de la altura segun avanzamos en el sentido marcado por el
eje X fijo. En esta capa se almacena el valor de la tangente del angulo que forma la
superficie con la horizontal.

Es importante hacer notar que el gradiente es calculado utilizando para ello las alturas
de los puntos de colisidén que se corresponden a la misma celda, es decir, no se
realiza un gradiente entre celdas adyacentes, sino en el interior de la misma.

UPM Enrique del Sol Acero 37



Aunque en general los resultados no deben variar demasiado, se ha elegido esta
forma de actuar por ser mas precisa ya que representa el gradiente justo en la celda
en la que se produce el cambio de altura, y si se hiciera un gradiente entre celdas,
este se encontraria algo desplazado respecto de la variacion de altura producida.

Como ejemplo de la capa de gradientes se puede observar la siguiente figura que
ilustra los gradientes tedricos de un terreno en un mapa de baja resolucion. Estos
gradientes han sido calculados por el método de gradientes por filas y columnas que
ya se explicara en el apartado correspondiente.

Real emironment ¥-Gradient
R R R R R R R R ———— A R A e A

IEne R e Bl ranne R T e FUCHSRECH o (GEEUDURUEE Gr WGBURERE ¢ oot i i

28 -200 -160 -100 -50 o a0 100 150 200 250

Figura 12. Reconstruccion de los gradientes de un terreno

3.3.3. Confianza

La capa de confianza se utiliza para tener una medida de lo fiables que son los datos
almacenados en cada celda. Puesto que la reconstruccion se realiza a partir de las
medidas de distancias obtenidas con un laser de barrido horizontal y vertical con
incrementos de paso muy pequefos, se obtienen un gran numero de puntos de
colision.

Cada punto de colision es localizado en el mapa y asignado a su correspondiente
celda, es posible por lo tanto que haya celdas que recojan un gran numero de puntos
de colision y otras con un numero pequefio de puntos, o incluso ningun impacto.
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De esta forma, con la confianza solo se registra la informacién proporcionada por los
puntos donde el laser ha impactado, ignorando el resto de puntos por donde el laser
ha “sobrevolado”.

Otro efecto a considerar es que para una misma celda, puede ocurrir que los puntos
estén muy juntos en una pequefia zona, 0 que por el contrario estén separados
ocupando gran cantidad de la superficie de la misma.

& . ®

Figura 13. Efecto de la dispersién de los puntos de impacto

Es légico plantearse qué aporta mas informacion, si unas celdas donde el numero de
puntos sea reducido pero su dispersion sea grande como puede ocurrir en las celdas
(1,2) y (2,3) de la Figura 13 si por el contrario aporta mas informacién la situacién de
la celda (1,1) donde los puntos no presentan demasiada dispersién pero existe gran
cantidad de puntos de impacto.

Por ese motivo, ademas del numero de puntos de impacto sobre una celda hay que
tener en cuenta la dispersion de esos puntos, asi surgieron durante el desarrollo del
software dos tipos de algoritmos que fueron implementados:

¢ Confianza basada en el nUmero de puntos de impacto
e Confianza basada en la dispersion de los puntos de impacto.

De estos dos tipos de algoritmos investigados que se desarrollaran en apartados
posteriores, el segundo de ellos resultd ser mas eficaz y fue el elegido para la
implementacion definitiva.

Los valores numéricos utilizados para medir la confianza son valores reales en el
intervalo [0,1], de tal forma que se representa el desconocimiento absoluto del terreno
con el valor de confianza 0, y el conocimiento suficiente con el valor 1, si bien
internamente tiene una representacion de niveles de 8 bits para lograr una mejor
compactacion de la informacion.
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Las diversas misiones del proyecto NM-RS pueden implicar distintos niveles de
conocimiento previo del terreno. Esto determina que la confianza inicial de los mapas
puede ser variable pero con alta probabilidad sera muy baja al inicio puesto que se
considera que la informacion inicial de los mapas es muy pobre en comparacion a la
obtenida por el robot en la exploracién. También existiran misiones donde la confianza
inicial sobre el terreno sea totalmente nula, o simplemente no exista ninguna
informacion, en esos casos se asignara el valor 0.

A medida que el robot progresa en la exploracion del entorno y va recogiendo
informacion sobre los puntos de impacto del laser, la confianza de cada celda va
aumentando. Aunque como ya se explicara en la seccion de algoritmos, cuando se
produce un cambio en las medidas del terreno respecto a la informacion que habia
antes habra momentos en los que la confianza disminuya.

A continuacién se detalla el nivel de confianza adquirido durante el recorrido de una
trayectoria de muestra por el robot. Debido a las limitaciones de simulacién se ha
tratado de hacer un recorrido a través del terreno poniendo especial detalle en las
zonas mas interesantes del mismo en cuanto al nivel de relieve se refiere y dejando
otras zonas de menor importancia mas carentes de informacion. Para ello se han
establecido puntos para la posicion del robot mas juntos cuanto mayor es el nivel de
detalle deseado y mas separados para cuando este nivel de detalle es menor.

Real erwironment with robot trajectory

Figura 14. Mapa global con la trayectoria seguida por el robot
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Figura 15. Reconstruccion global de la confianza

En rojo se visualiza las zonas de mayor confianza, mientras que en azul son las zonas
mas carentes de informacion.

3.3.4. Ocupacion

El grado de ocupacion de un terreno se define en relacién al robot que transita por él y
toma en consideracion la capacidad del robot de moverse por superficies inclinadas. Si
la pendiente es superior a la tolerada por las capacidades mecanicas del robot, se
considerara el terreno como ocupado y si por el contrario el valor absoluto de la
pendiente es admisible para el robot, se tomara como nivel de ocupacion un valor
numeérico que subira linealmente con el valor absoluto de la pendiente.

Si inicialmente se posee conocimiento previo de las alturas del terreno y por tanto de
los gradientes del mismo, se podran inferir los niveles de ocupacion para cada celda
de forma inmediata.

Este nivel de ocupacion se utilizara en otros modulos del proyecto para planificar el
camino que puede tomar el robot en su transito de un punto a otro, teniendo en cuenta
de esa forma la facilidad de paso por cada celda.
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Figura 16. Reconstruccion global del grado de ocupacion

En la Figura 16 se observa como visualizando unicamente el nivel de ocupacién como
libre u ocupado, tenemos las zonas en rojo que representan areas ocupadas o zonas
por donde el robot no puede desplazarse. Mientras que en azul se aprecia el terreno
libre o terreno sin informacion.

3.3.5. Calidad GPS y calidad de la comunicacion

El nivel de calidad del GPS determina varios parametros del comportamiento del robot,
como la conveniencia de realizar la reconstruccion o no realizarla, asi como de la
necesidad de ejecutar el sistema de SLAM.

Se han definido por requerimientos del proyecto tres niveles de comunicaciones GPS,
que son, nivel 0 o ausencia de sefial, nivel 1 o GPS no diferencial, y nivel 2 0 GPS en
modo diferencial. Estos niveles implican los siguientes comportamientos:

e Nivel 0: no se realiza la reconstruccién puesto que no se tiene informacion
fiable para realizarla. Se activa el médulo de SLAM para proceder a la
localizacién aproximada del robot.
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e Niveles 1 y 2: en esta primera versién del software no se hacen diferencias
entre ambos niveles y se procede a realizar la reconstruccion para ambos y a
la no ejecucion del médulo de SLAM.

El nivel de comunicaciones va asociado a la capacidad de interconexion de unos
robots con otros o con una estacién base. Este valor al igual que la calidad de
recepcion de la sefal GPS es almacenado exclusivamente en la celda en la que se
encuentra el robot en cada momento durante la ejecucion de la mision.

3.4. DATOS DE PARTIDA

3.4.1. Mapa inicial del terreno en baja resolucion
(LowResMapGilobal)

Como se ha comentado anteriormente, en este mapa se almacena la informacion
inicial y es en el que se realiza la fusion de la informacion procedente de todos los
robots para ser transmitida de nuevo a todos los robots con la nueva informacion
actualizada.

Como informacién de partida se dispone de un conocimiento previo del terreno sobre
el cual se va a desarrollar la reconstruccion en forma de un mapa en baja resolucion,
con unas dimensiones y escala conocidas y determinadas en principio por los
requisitos de un determinado ensayo que se vaya a realizar. Se llamara de aqui en
adelante LowResMapGlobal .

La informacion previa contenida en este mapa puede ser nula y estar el mapa vacio o
por el contrario, disponer de una informacion inicial cuya calidad no tiene porque ser
muy alta, por lo que se asociara al mapa inicial un nivel de confianza bajo (ej. C=1/16
sobre 1).

3.4.2. Dimensiones y caracteristicas del robot

Las dimensiones de los robots vienen impuestas segun determinados modelos que
van a ser usados para las pruebas. No obstante, éstos son heterogéneos en su
tamafo y sistema de locomocién, por lo que cada robot generara mapas de alta
resolucion con tamafio de la rejilla adaptado al tamafio del propio robot.

3.4.2.1. Caracteristicas de los sensores

Como ya se ha comentado, este software esta realizado para robots equipados con
sensor laser utilizados para medir distancias punto a punto y una integracion de
sensores GPS, inerciales fusionados con un filtro Kalman para obtener la primera
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aproximacién de la posicion. Esta seccion revisa las principales caracteristicas del
paquete de sensores requeridos para la navegacién auténoma considerando algunos
aspectos fisicos (valores tipicos) como el consumo de potencia, el tamano, peso para
poder tener una vision real del problema y de la soluciéon considerada. Todos estos
aspectos han tenido que ser simulados en MRS, vy parte de ellos en Matlab. Los
aspectos mas importantes han sido la localizacion de los sensores respecto al centro
de masas del robot, los angulos barrido vertical y horizontal asi como la resolucion
angular y resolucion en la medida de la distancia del laser. A continuacién se vera un
ejemplo de valores tipicos de sistemas comerciales y se explicara en profundidad las
implicaciones de cada parametro dentro de la simulacion.

Sensores para SWR Integracion Laser Ultrasonidos
GPS/IMU/MAG (valores unitarios)
Potencia
20 w 20w 300 mw
Tamaiio
800 cm3 1000 cm? i
Peso 1kg 6 kg 25¢g
Rango 100 m
Vertical:
120 9/s +- 452 paso 1 © 05-10m
Horizontal:
+-902 / paso 1¢
Errores
12 Roll & Pitch +0.02m
0.1lm
22 Yaw

Como parametros esenciales para realizar transformaciones de cambio de base se
tiene que las dimensiones del Iaser y su posicidn relativa respecto el centro de masas
del robot juegan un rol fundamental, ya que es necesario conocer esta informacion
para convertir las coordenadas de un punto visto desde el sistema movil ligado al laser
a el sistema fijo ligado a un punto del mapa global. Asi como el peso no es un
parametro de importancia en las simulaciones con Matlab puesto que no se han tenido
en cuenta efectos dinamicos.

Otros parametros fundamentales son los rangos de barrido vertical y horizontal que
unidos a la resolucién o el paso angular entre dos medidas consecutivas determinan
las dimensiones de la matriz de salida del laser. Dicha matriz es uno de los elementos
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mas importantes en todo el desarrollo de este trabajo y se le dedicara un apartado
especifico. En cada ciclo de medidas, se obtiene como salida una matriz rectangular
cuyos valores son las distancias del laser al punto de colision para cada rayo
caracterizado por los angulos de barrido horizontal y vertical. De esta forma se obtiene
una imagen reconocible del terreno detectado como si se visionara una imagen en un
televisor. Las dimensiones de esta matriz lamando a al angulo de barrido horizontal, o
al vertical y r, y v a las resoluciones horizontal y vertical son:

ne filas = (Omax = Omin) (17)
T‘U

n2 columnas = M (18)
h

Donde el subindice h indica horizontal y el subindice v indica vertical.

3.4.2.2. Emplazamiento y orientacion del robot

Se conoce a priori el estado inicial del robot, es decir sus coordenadas absolutas
respecto al origen del mapa fijo ( X4, Y4, Z1) y la orientacién del robot respecto al ejes
fijos dados por los angulos de Euler:

¢ Alabeo o Roll (@), angulo que representa un giro respecto al eje X; fijo.

¢ Cabeceo o Pitch(0), angulo que representa un giro respecto al eje Y; fijo.

e Guinada o Yaw(y), angulo que representa un giro respecto al eje Z; fijo.
Inicialmente se partira siempre con el robot situado en el centro del mapa local.

3.4.3. Aspecto del mapa local

Para realizar la reconstruccion se utilizara un mapa local que es el mapa que utiliza el
robot en tiempo real para almacenar los calculos realizados con las medidas tomadas
por el laser. Este mapa denominado HighResMap es un mapa local en alta resolucion.
Las dimensiones, y escala seran parametros que se elegiran previamente segun los
requisitos de cada ensayo. Para las pruebas en Matlab se ha venido utilizando unos
valores de escala de 1 m. y con un numero de filas y columnas de 240. El cambio de
estos parametros influye enormemente en la apreciacion de los resultados, sobre todo
de forma grafica, puesto que cuanto mas difieran las dimensiones del local respecto
del global mas dificil es apreciar los cambios en este al reconstruir. Por ese motivo se
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eligieron estos valores, donde se hace primar mas la visibilidad de los resultados que
el realismo de las dimensiones consideradas. En otros casos mas realistas es
probable que la dimension del mapa global sea mayor.

Este mapa aparecera vacio inicialmente y comenzara a tener contenido a partir de la
primera toma de datos del laser.

3.4.4. Trayectoria del robot

Se establecera un camino que debera seguir el robot por el mapa. Ese camino vendra
dado por una serie de puntos designados segun sus coordenadas (x, y) sobre el mapa
global, por lo que para la simulacion en Matlab sera un camino discreto basado en
puntos. En cada lectura del laser se ira obteniendo la nueva posicién del robot y las
medidas del laser se calcularan en base a esa nueva posicion.

A continuacion se puede observar un ejemplo de una trayectoria elegida para el robot.
En este caso el mapa global consta de una serie de montafas y de valles que el robot
va bordeando. Se puede observar algun salto brusco en los movimientos del robot,
este tipo de saltos solo tienen como finalidad el ahorro de tiempo de calculo por zonas
donde no se ha requerido excesivo detalle.

Real environment with robot trajectory

Figura 17. Mapa global con la trayectoria del robot
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3.4.5. Posicion del mapa local en el interior del mapa global

Se denominara C_local_global a la posicién en cada instante del centro del mapa
local (HighResMap) respecto al mapa global LowResMapGlobal. Llamaremos ciclo al
proceso completo de reconstruccion y fusion de cada matriz de medidas del laser. Al
inicio de cada ciclo se comprueba que el alcance del laser del robot esta comprendido
en el interior del mapa local y que no existan zonas de reconocimiento del laser que
pudieran quedar fuera. Si el alcance del laser esta dentro del rango del mapa local, no
se desplaza el C_local_global, en caso contrario si se desplazaria.

Debido al movimiento del robot por el terreno, esta comprobacion se realiza en cada
nuevo punto de desplazamiento. Al ser la simulacién a base de desplazamientos
discretos podria ocurrir que en un punto el laser se encontrara correctamente situado
en el interior de los limites del HighResMap Yy en el punto siguiente no ocurriera lo

mismo.

| Robot

—1{ C_local_global

\

Centro del mapa fijo

/ Figura 18. Caracteristicas principales del HRM y LRM

Mapa movil
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Mapa movil inicial Mapa movil desplazado

Figura 19. Desplazamiento del HRM

Como se puede observar en la figura 2 la situacion es correcta puesto que el rango de
alcance del laser se encuentra en el interior del mapa local, en esta situaciéon no se
desplazara C_local_global. Distinto es el caso de la figura 3 donde el laser sale del
alcance del mapa local. En esta situacién es preciso desplazar C_local_global y con
ello el mapa local para que el laser este contenido en el mapa. Mas adelante se
explicara en detalle el proceso de desplazamiento de dicho mapa

3.4.6. Sistemas de referencia utilizados

Para la navegacion auténoma y el reconocimiento del terreno se han usado 3 sistemas
de coordenadas fundamentales. En primer lugar se encuentra el sistema fijo que es un
sistema con origen en un punto determinado del mapa global, un punto determinado
previamente. Por otro lado, y como sistemas de referencia moviles se tienen el
sistema de referencia ligado al centro de masas del robot y solidario con él y el
sistema de referencia ligado al laser y también solidario con él. Denominaremos
sistema 1 al sistema fijo, sistema 2 al sistema movil ligado al centro de masas del
robot y sistema 3 al sistema ligado al laser. De esta forma tenemos:
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Z3

Figura 20. Sistemas de referencia del robot

Ademas se definiran ahora los sentidos del barrido horizontal (pan) vy vertical del laser
(tilt) en el sistema asociado al laser. Se tomara el eje como origen del angulo de
barrido horizontal a y el sentido positivo de dicho angulo sera una rotacion hacia . De
forma similar se tomara el eje  como el origen del angulo de barrido vertical o siendo
el sentido positivo del mencionado angulo un giro hacia el eje  en sentido negativo.

Es decir:

Y3 Y3
a>0 35 c>0
X3 =T X3

Z3; Z3

Figura 21. Sentidos de giro de los angulos de barrido del Iaser.
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4. ALGORITMOS DE RECONSTRUCCION

4.1. Introduccién

Se utiliza el término reconstruccion para indicar el procedimiento desarrollado para la
obtencion de un modelo digital del entorno, que es uno de los objetivos principales de
este proyecto. Dicha reconstruccién del terreno explorado por el robot, mejora la
informacién de la que se ocasionalmente se dispone a priori.

Para realizar este proceso se parte Unicamente de la informacion obtenida por el
laser, en forma de una matriz de medidas. A partir de estos datos y de la informacion
sobre los angulos de barrido horizontal y vertical que el laser proporciona en cada
momento, se obtienen las coordenadas de los puntos en los que el laser colisiona
referenciado al sistema 3 (Ver apartado anterior).

Posteriormente, tras un cambio de base se obtiene dicho punto de impacto del laser
visto desde el sistema 1 (Ver apartado anterior). De esta forma, se podra almacenar
en la matriz del mapa reconstruido la informacion obtenida y estimar tanto la
informacién global como la local.

Para la correcta localizacion en un mapa global geo-referenciado es necesario
I6gicamente conocer con precisidon no solo la posicidn del robot en éste en el momento
de la adquisicion de los datos sino también su actitud.

En términos practicos, y dado que la estimacién de la actitud tiene una gran
disponibilidad (solo cuando el sensor inercial ser averia no proporciona estimaciones)
se puede geo-referenciar cuando el GPS proporciona una informacion precisa, lo que
ocurre cuando se dispone de una estimacién de la posicién bien en modo individual o
diferencial (modos 1y 2)

En caso de no disponer de una estimacion de posicion por parte del GPS, se
procedera a la localizacion por diversos métodos de SLAM que se comentaran en el
capitulo (pon aqui el numero de capitulo).

4.2. Esquema general del proceso de reconstruccion

Como ya se ha comentado anteriormente el médulo M45 es llamado cada vez que se
dispone de informacién nueva procedente del laser. La nueva informacion con la que
se realiza la llamada al algoritmo, permite realizar los calculos necesarios para
reconstruir todos los puntos de impacto del laser. Se utiliza la metodologia siguiente

UPM Enrique del Sol Acero 50



DATOS DE ENTRADA

e r_RobotStateEstimate
e | rf3DMeasure

e |LowResMapGlobal

e Sensors

[ ]

RobotData
e Otros

E:> Médulo M45

J

Figura 22. Entradas y salidas del modulo 45 (Mapeado)

"

LowResMap
HighResMap,

Otros

DATOS DE SALIDA

r_RobotSlamEstimate

4.2.1. Estimacion del estado del robot

Para la obtencién de la variable r_RobotStateEstimate de la que se obtiene la
informacion de partida referente a la primera estimacion de la posicion y la orientacion
del robot se utilizan una serie de filtros de Kalman en cascada que fusionaran la
informacion de los sensores inerciales, GPS y sistema de odometria del vehiculo,

como muestra la Figura 23 .
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GPS Quality

r_RobotSlamEstima

Figura 23. Esquema de la fusién sensorial y estimacion del estado del robot.

Debido a que existen diferentes tipos de robots dentro del proyecto, cada uno utiliza
diferentes modelos de odometria con sus correspondientes parametros, de forma que
se genera una estimacion del incremento de la posicién por médulos anteriores, de tal
forma que pueda ser utilizada en la fusién de datos de una forma homogénea con
independencia del vehiculo utilizado.

Existe también un moédulo encargado de fusionar la informacién proveniente del GPS y
del sensor inercial para proporcionar una solucion completa sobre posicion, velocidad
y orientacion.

UPM Enrique del Sol Acero 52



Como una de las mas importantes contribuciones de este proyecto, se proporciona
una estimacion absoluta de la posicion del robot utilizando la informacion del mapa
previamente obtenido y las medidas del laser. Esta medida se introduce como
estimacion del estado en otro filtro de Kalman cuando no se dispone de estimacion en
la posicion mediante GPS. Esta salida se utiliza como entrada como estimacion del
primer filtro de Kalman de la cascada.

4.3. ESQUEMA GENERAL DEL MODULO

El algoritmo de reconstruccion dispone de una etapa previa de configuracion segun
una serie de parametros como son el rango de movimiento horizontal y vertical del
Iaser, la resolucion de dicho movimiento y el alcance del Iaser.

También se procede a la inicializacion del mapa de alta resolucién a partir de las
caracteristicas que éste debe poseer, la posicién del robot, el mapa global y la
informacién sobre los sensores y dimensiones caracteristicas del robot. Estos detalles
se explicaran mas detalladamente en apartados posteriores.

Una vez inicializados los mapas y las variables de forma conveniente, se procede a
comprobar si existe sefal GPS. Este es un punto fundamental en el mecanismo de
operacién de todo el médulo, puesto que determina si se va a proceder a la
reconstruccion o si por el contrario se va a proceder a usar el médulo de Slam para
obtener una mejor aproximacion de la posicion. Si se dispone de senal GPS se
procedera a reconstruir utilizando la estimacion de la posicidn, por el contrario, si no se
dispone de senal GPS, se ejecutara el médulo Slam, que en la mayoria de los casos
proveera de una estimacién de la posicion mejorada.

Como herramienta de ayuda al desarrollo del algoritmo, se ha disefiado un entorno
utilizando Matlab que permite la creacién de entornos mediante la utilizacion de una
superficie plana y afiadir elementos positivos o negativos (montanas o valles) asi como
una simulacién de un sensor laser que se puede orientar y situar de forma arbitraria en
dicho entorno y éste proporciona la simulacion del sensor real proporcionando una
matriz de puntos de colisién segun los parametros de entrada deseados (rangos,
incrementos, alcances y error en la estimacion)
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En primera instancia, se genera un mapa local auxiliar, utilizando para ello
unicamente la informacién proveniente de una lectura del laser. Ese mapa auxiliar se
fundira posteriormente con la ultima estimacién del mapa local de alta resolucién
(HighResMap) dando como resultado un nuevo mapa de alta resolucion.

Dicho nuevo mapa (adaptado en sus dimensiones) se fusiona posteriormente con la
ultima version disponible de forma local en el robot del mapa global
(LowResMapGilobal) , produciendo con ello la salida deseada del médulo de mapeado.

A continuacion se describe con detalle cada fase del algoritmo utilizado.
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Inicio, inicializacion de variables

Incorrecto

Traslado del centro
del mapa movil

Comprobacion del
rango del laser

Incorrecto Traslado del centro

Comprobacion de la s
del mapa movil

posicion del mapa

movil

Creacion de HighResMap a partir de LowResMapGlobal

¢Posicion

Simulacién del
conocida?

laser
¢GPS operativo?

Reconstruccion del terreno en alta
resolucion. Obtencion de
aux_MapcCell_local

Fusidn con HighResMap

Fusion del nuevo HighResMap con
LowResMapGlobal

Fin del ciclo. Siguiente lectura del laser.

Figura 24. Proceso de reconstruccion y mapeado.
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4.4. PROCESO: COMPROBACION DEL RANGO DEL LASER

Como se ha descrito anteriormente, el sistema NMRS trabaja con dos tipos de mapa;
el local de alta resolucion (de una extensiéon pequefa, de orden de 2 veces el alcance
del laser) y mapas de baja resolucion (de la misma extensién que el entorno de
simulacion).

A su vez, existen mapas de baja resolucion globales (que es el resultado de la fusion
de la informaciéon de todos los robots existentes en la simulacion) y mapas de baja
resolucion locales (que es la versién local de cada robot del mapa global modificado
en las aportaciones realizadas a la reconstruccion por parte de dicho robot). La
diferencia entre los mapas locales y globales sera tanto mayor como mayor sea el
tiempo transcurrido desde la transmision de los datos de los robots y la fusién de la
informacién procedente de varios de ellos y la retransmisién de nuevo a los robots
participantes.

Con objeto de establecer la porcion del mapa de baja resoluciéon que se corresponde
con la de alta resolucion se realiza una serie de comprobaciones con el objeto de
desplazar correctamente el mapa de alta resolucion sobre el de baja.

Este desplazamiento del mapa de alta resolucion debe realizarse cuando el
desplazamiento del robot en el mapa de alta resolucion motiva que la zona de alcance
del laser se sale de éste. Esto puede producirse de forma habitual si las dimensiones
que se eligen para el mapa local son pequefias. Por ese motivo se produce un
desplazamiento casi continuo del mapa local sobre el mapa global con una grabacion
y lectura de datos también continua. Para solucionar este problema se han disefiado
unas comprobaciones previas que hay que realizar siempre.

UPM Enrique del Sol Acero 56



Dato de partida: nueva
posicion inicial del robot

Calculo de la celda
correspondiente en el mapa de
alta resolucion

No .
Nueva Posicion del centro

éEsta la celda dentro

de unos rangos? del mapa: posicién actual

del robot

Proceso:
comprobacion de la
posicion del HRM

Figura 25. Proceso para calcular el desplazamiento del mapa de Alta Resolucion

Al iniciar la simulacion se parte con el punto central del mapa de alta resolucion
situado sobre el robot, por ello no existird ningun problema relacionado con el hecho
de que el punto de impacto del laser no se encuentre dentro del mapa. Pero en el
movimiento del robot se debe comprobar periddicamente que el alcance maximo del
laser se encuentra dentro de los limites del mapa.

Como se puede observar en el esquema anterior, se trata por tanto de calcular la
celda que ocupa el robot en el mapa local y ver si la circunferencia correspondiente a
todo el alcance de laser esta contenida en el mapa.
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Figura 26. Diferentes situaciones del robot dentro del Mapa de alta resolucion.

Como se puede observar en la Figura 26 (izq.), el rango de alcance del laser
representado mediante un circulo, se encuentra dentro del area del mapa local,
mientras que el la figura de la derecha, ocurre el caso contrario. Mientras que en el
primer caso la comprobacién seria correcta y no daria lugar a ninguna accion, en el
segundo caso habria que recolocar el centro del mapa local de tal forma que ocupe
ahora la posicion actual del robot, tal y como indica la Figura 27:

Figura 27. Diferentes situaciones del robot dentro del mapa de Alta resolucion.

De esta forma la posicion actual del robot vuelve a coincidir con el centro del mapa
local.
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4.5. PROCESO: COMPROBACION DE LA POSICION DEL MAPA MOVIL

Dato de partida: nueva
posicion inicial del robot

¥

Nueva posicion del
HRM - HRM en el
limite del LRM

¢HRM dentro de unos limites del
LRM?

A 4

Fin

Figura 28. Esquema del proceso de comprobacién de la posicidon del mapa mévil

Puede ocurrir que debido al movimiento del robot, o debido a la traslaciéon efectuada
en el proceso anterior el mapa local se encuentre en el extremo del mapa global. En
ese caso se debe impedir que el sistema intente crear un nuevo HRM que se salga de
los limites permitidos por el LRM. El criterio utilizado en estos casos consiste en
superponer Unicamente hasta los limites de la zona permitida aunque el robot no se
encuentre centrado respecto al nuevo mapa de alta resoluciéon creado.

Figura 29. Situacion relativa del mapa de alta resolucién sobre el de baja.
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Como se puede observar en la Figura 29, el mapa local se escapa de los limites
permitidos. A esta situacidén se podria llegar unicamente cuando al desplazar el HRM
mediante el proceso de comprobacién del rango del laser, se diese un salto brusco en
la posicién del nuevo mapa, invadiendo la zona prohibida. Por ese motivo se efectuan
los dos procesos de forma consecutiva, primero se procede a comprobar el rango del
laser, se hacen los cambios oportunos y luego se comprueba que el HRM se
encuentre en el interior del LRM.

A continuacién (Figura 30) se muestra un caso particular de una situacion que se
podria dar en alguna ocasion. Se trata de medidas del laser que salen fuera del LRM.
Esta situacion puede darse si no se impide que el robot pase por cerca del borde del
LRM. Si esto ocurre, es probable que el alcance del laser quede fuera de dicho mapa.
En este caso se corrige la posicién del centro del HRM, desplazandolo hacia la
izquierda en este caso para que tenga cabida en el mapa global. Al realizar esta

operacioén podria ocurrir que el alcance del laser estuviera ahora fuera del mapa local.
En este caso se ignoraran las medidas que cumplan esa condicion.

Figura 30. Situacion relativa del mapa de alta resolucién sobre el de baja.

Una vez realizados los dos procesos anteriores se obtiene una salida que se
denominara Cy = (Xy,Yy) Y que corresponde a las coordenadas del centro del HRM
que se han ido calculando en base a todas las restricciones antes mencionadas.

El proceso de captura de datos desde LRM hacia HRM vy el volcado de los mismos en
sentido contrario sera explicado detalladamente en apartados posteriores.
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4.6. Proceso : Creacion del HRM inicial a partir de LRM

Teniendo en cuenta que el tamafio de una celda de un mapa de baja resolucion
siempre debe ser multiplo del tamafio de una celda de un mapa de alta resolucion, los
algoritmos para situar relativamente ambos mapas resultan sencillos. Asi, una vez
determinado el centro del HRM como se ha explicado en apartados anteriores, se
calcularan las celdas del LRM que deben ser transferidas al mapa local. Para ello
bastara con a partir de la cela del LRM correspondiente a la coordenada Cy =
(Xy, Yy) sumarla o restarla la mitad de la dimension del HRM adaptada por medio de
la escala, las formulas a utilizar son las siguientes:

I, = Ig—%(%)+1 (23)
Ip = 1+t (%) (24)
Jo = gy - i (2 (25)

Jy = g+ ke (2 g (26)

Donde:

e I,, J,:son lafilay columna iniciales respectivamente del mapa LRM.
e Ir, Jf:son lafilay columna finales.
e I, ], son lafilay columna del LRM correspondientes a Cy,.

®  Snmigeq Y SNm2i00q SON €l NumMero de filas y columnas del HRM.
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Como se puede observar en el ejemplo que viene a continuacion en la Figura 31, se
tiene un LRM de dimensiones 8 x 8 cuya celda central viene sombreada y su
coordenada identificativa se indica mediante un circulo en su esquina caracteristica. Si
se desea situar un mapa de alta resoluciéon cuyas dimensiones equivalentes al LRM
son una cuadricula 4 x 4, al aplicar las ecuaciones anteriores resultaria:

[lg, Jgl = [4, 4]
[lo: Jo] =13, 3]
[Ifi ]f] = [61 5]

Lo que resulta en un mapa HRM también sombreado de las dimensiones deseadas (4
x 4), cuyo centro sigue siendo Cy. Pues bien, con esta metodologia se calculan los
indices de las celdas que delimitan el mapa de alta resolucién dentro del LRM. Asi,
solo bastara a continuacion copiar las celdas correspondientes en orden para crear un
nuevo HRM.

]o ]g ]f

Figura 31. Creacién del HRM inicial a partir del LRM
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Para calcular el numero de celdas de LRM equivalentes a otro niumero de celdas de
HRM basta considerar que:

N® celdas HRM - Escala HRM
= N2 celdas LRM equivalentes - Escala LRM (19)

Por ello el numero de celdas del HRM equivalentes a una del LRM es:

Hay que tener en cuenta que en el desplazamiento del HRM suele ocurrir que parte
del nuevo mapa coincide con el mapa antiguo, por lo que esa informacion coincidente
no se introducira en el HRM sino que se conservara del estado anterior. Dado que
cada paso de alta a baja resolucién implica una pérdida de informacion, es
conveniente realizar este paso el menor nimero de veces. Equivalentemente a esto,
es conveniente también utilizar la informacion existente de alta y no sobrescribirla con
la informacion que se posee en baja ya que esta sera siempre de peor calidad. Se
puede ver claramente con un ejemplo grafico:

Figura 32. Conservacion de los datos del HRM en la adquisicion de nueva informacién
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Como se puede ver al desplazar el HRM la zona coincidente sombreada mas oscuro
en el dibujo se debe conservar y no se deben importar nuevos datos de baja en esa
area puesto que se perderia calidad de la informacion que se posee.

4.7. PROCESO: SIMULACIONES DEL TERRENO Y DEL LASER

Como se ha comentado anteriormente, con objeto de facilitar la depuracién del
software en Matlab, se desarrollaron una serie de aplicaciones con el objeto de tener
todos los procesos disponibles antes de pasar el codigo al Microsoft Robotics Studio.
Por ello, dos aplicaciones basicas fueron necesarias; una de ellas crea un terreno
virtual y con ello un Low Resolution Map y la otra simulan el impacto del haz de rayos
laser sobre dicho terreno.

Simulacién del terreno

Este programa crea un mapa formado por la interseccion de un terreno plano con unos
determinados numeros de paraboloides positivos y negativos. Todo ello parametrizado
de forma que se puede elegir el numero de parabolas (Ver Figura 33). Aunque la
localizacion de estas se produce de forma aleatoria en cada ejecucion del software.
También se pueden elegir las dimensiones totales del terreno. De esta forma se
crearon numerosos mapas de prueba, mapas que vienen representados
matematicamente como una matriz cuyos valores reales representan la altura de cada
celda.

Este programa resulto ser de gran utilidad para las simulaciones sucesivas dado que
se podian crear mapas con los elementos caracteristicos deseados.
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Figura 33. Ejemplo de entorno simulado con Matlab.

Simulacién del laser

Para la simulacion del laser se desarrollaron una serie de funciones con objeto de
calcular las intersecciones de los rayos lanzados segun unos angulos
determinados con los elementos del entorno (paraboloides o suelo) dentro del
alcance maximo del laser. Con ello, se obtiene una serie de puntos (X, Y, Z) de
colision, donde la distancia de cada uno de los puntos de colisién al punto de
partida (laser), se corresponde con el valor medido por el mismo.

Figura 34. Representacion de puntos de colision del laser.
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Como se puede observar en la Figura 34 el laser forma una semiesfera de puntos de
impacto, aunque evidentemente donde el laser no impacta se lee el valor maximo
correspondiente a su alcance maximo (tipicamente 80 metros).

4.8. CALCULO DE LAS COORDENADAS CARTESIANAS DE LOS
PUNTOS DE IMPACTO

En este apartado se va a describir el algoritmo para transformar la matriz de distancias
entregada por el laser en los correspondientes puntos de colision referenciados al
sistema de coordenadas del mapa.

En primer lugar se describe la estructura de la matriz D de distancias proporcionada
por el laser, denominada Lrf3dMeasure.

El sistema laser realiza dos barridos, uno horizontal que varia entre (+a, -a) y uno
vertical que varia entre (+0,-0) segun el siguiente criterio de signos.

Z3 Y3

ED o- Q‘“
X3 X3

»
»

Do Da

Figura 35. Criterio de signos en asignacion de angulos de barrido horizontal y vertical.

v

Teniendo en cuenta que Lrf3dMeasure representa una imagen en la que el valor de
pixel describe la distancia al punto de impacto, tiene que la fila superior de la matriz
corresponde al angulo de barrido vertical mas negativo vy la fila inferior de la matriz
corresponde al mas positivo. Lo mismo se puede decir de la columna izquierda de la
matriz que representaria el angulo de barrido horizontal maximo mientras que la
columna situada mas a la derecha se representa el angulo de barrido horizontal
minimo. De tal forma queda:

AMAX) OMIN +eoveeer AMIN, OMIN

Lrf3dMeasure =

AMAX) OMAX weeeeenes AMIN, OMAX

Figura 36. Variacion de los barridos angulares vertical y horizontal en el
interior de la matriz de medidas del laser.
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Asi, una vez que se posee la matriz con las medidas de las distancias a los puntos de
colision, se procede a recorrer dicha matriz elemento a elemento asociando a cada
valor de distancia los correspondientes al angulo a y o segun las siguientes
expresiones:

a= aysx— (j—1) +RH (21)

g= opyNt+ (1—1)*RV (30)

Donde:
e Yy o son los angulos del laser segun las referencias establecidas.

o ayax €S el angulo de apertura horizontal maximo correspondiente a la mitad
del angulo total de barrido horizontal.

e oyv €S el angulo de apertura vertical minimo correspondiente a la mitad del
angulo total de barrido vertical.

e i,json la filay columna del elemento de la matriz del laser que se esta
procesando.

e RH,RV son las resoluciones angulares horizontal y vertical.

A continuacion, se realiza la transformacién de coordenadas esféricas a cartesianas
segun el sistema de referencia 3, centrado en la Optica del Iaser, segun las siguientes
expresiones:

X3 =d cos(—o) cos(a) (31)
Y; = d cos(—o) sin(a) (32)
Z3 = d sin (—0) (33)

Posteriormente, se debe pasar desde el sistema de referencia 3 o sistema del laser
hasta el sistema fijo para representar cada punto de impacto respecto al sistema de
coordenadas fijo. Para ello, se cuenta con la informacion de los angulos de Euler del
sistema movil (2) respecto al fijo (1) (actitud del robot) y se utiliza el calculo matricial
basado en transformaciones homogéneas.
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En primer lugar se definen los angulos de Euler que van a ser utilizados:
¢ Roll (), angulo que representa un giro respecto al eje X; fijo.
¢ Pitch (0), angulo que representa un giro respecto al eje Y; fijo.

e Yaw (), angulo que representa un giro respecto al eje Z; fijo.

En segundo lugar se define el tipo de transformacion utilizada:

Vector sistema 1 = T} * R}« T5 = Vector sistema 3 (34)

Estas operaciones son debidas a que para pasar del sistema 2 al 3 es necesaria una
simple translaciéon. Sin embargo, para pasar del 2 al sistema de referencia del mapa es
necesaria una rotacion y una posterior translacion.

Estas operaciones en detalle serian:

X4 1.0 0 X,
Y, 0 10 VY,),
Z,]7\lo o 1 2,
1 0 0 0 1
CP) «C(O) C(P)+S(O)«S(@)—SW) «C(@) CWP)SO) «C(@) +SW) =S(@) 0
S)«€(O) SP) *S(0) *S(@) + C(P) =« C(p) SP) *S(0)  C(@) —C(P) «S(¢p) 0|, (35)
—-5(0) ) «S(e) C(0) = C(p) 0
0 0 0 1
1.0 0 X,
01 0 Vg
0 0 1 Z4
00 0 1

Una vez aplicada esta transformacion matricial, se obtiene cada punto de impacto del
laser respecto del sistema fijo y ya solo queda asignarlo a una determinada celda del
mapa.

Las celdas se han numerado siguiendo los criterios de numeracion de los elementos
de una matriz. Como ejemplo consideraremos que el centro del mapa se encuentra en
la casilla (3,3). En este caso, toda variacién hacia la parte positiva del eje X ira
aumentando el numero de la columna, y toda variacion en el sentido del eje Y positivo
reducira el numero de fila de la matriz, tal y como describen las siguientes
expresiones:
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x
j = 1 36
j= X, +int (Escala) VAx > 0 (36)
i = i — 22
j= X.+int (Escala 1) VAx <0 (22)
i=Y —int( Y )\7’Ay>0 (23)

¢ Escala

i=Y —int( Y —1) VAy < 0 (24)

¢ Escala

Donde:

Ax es la distancia del punto de colision al centro del mapa en direccion Xj;.
e Ay es la distancia del punto de colision al centro del mapa en direccion Y;.
e Escala es la dimension de la celda en metros.

e Los valores j e i representan en numeros enteros la columna y la fila
respectivamente de cada celda.

4.9. ESTIMACION DE ALTURAS Y GRADIENTES

Una vez obtenidos los puntos de colision y la determinacion de la celda a la que
corresponden, éstos son almacenados en una lista de longitud variable para cada
celda, dicha longitud dependera del numero de puntos de colision que hayan “caido”
en dicha celda.

El método para el calculo de alturas y gradientes utilizado deriva de [12] y se basa en
calcular el plano que mejor aproxima la nube de puntos que hay en cada celda.
Basicamente aplica el concepto de regresion linear plana, obtener el plano que
aproxima la nube de puntos, la altura del centro de ese plano correspondera a la altura
media de los puntos lo que se tomara como altura de la celda.
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Asi, si la ecuacién del plano se expresa de la forma:
Z=axX+bx*xY+c (40)

Donde Z es la altura de la celda y X e Y son las coordenadas en el plano del mapa. De

. . . 0z : . .
esta forma el gradiente segun X sera G, = Franki el gradiente segun Y sera a su vez

0z

Gy, = Pl b. Por lo que bastara calcular los coeficientes de dicha ecuacion del plano

para obtener los gradientes.

Se trata pues de buscar el hiperplano que mejor se ajuste, para ello, uno de los
criterios que se pueden utilizar es minimizar la suma de errores o residuos al
cuadrado.

Segun el modelo de regresion multiple expresado por:

Yi=Bo+PB1*X1i+Bz*Xi+ 4 B *Xpi + (41)

Donde u; - N(0,62)y Bo,B1, P2, - Br, 02 son parametros desconocidos a estimar.

Expresandolo en notacién matricial:

Y 1 1 X11 X21 - Xp1 ([Po] [U17
Y2 1 X12X22 - Xp2 ||P1 u;
1 .
= 42
1 + (42)
. 1 .. _ .
Yn L 1 X1n X2n =+ Xgn _ﬂk_ U,
Y=XB+U (43)
U - N(0,62I) (44)

En el caso que nos ocupa, el vector de variables dependientes son el vector de alturas
de cada celda, y el resto de variables independientes serian las coordenadas X e Y.
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Para la estimacion por minimos cuadrados del sistema:

Y1 T 1 X11 X21 e Xg1 7 _ﬁo_ €17
Y2 1 X12X22 = Xg2 ﬁl e,
1
= + 45
1 (45)
) 1 _
Yn L 1 X1pX2n -+ Xkn - —Ek— €7
Y=XB+e (46)

Donde el vector e se define segun (47)

n

lel> = )" e? (47)

i=1

Para que ||e]|? sea minimo, e tiene que ser perpendicular al espacio vectorial generado
por las columnas de X.

1 X11 X21 - Xg1 €1
1 X12 X22 =+ Xpg2 [92}
1 . .
X= 1 ,e = | | (48)
1 X1inX2n - Xkn €én
Cumpliéndose:
XTe=0 (49)
XTYy = X"XB + X"e (50)
XTY = XTXB > B = (X"X)'XTy (51)
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Por lo tanto, los valores B, y B, corresponden directamente a los gradientes en sentido
X y en sentido Y respectivamente.

Como ejemplo, la Figura 37 muestra una trayectoria con puntos de captura de datos o
reconstruccion distanciados 50 m segun coordenadas X e Y. En una situacion real, el
robot es capaz de realizar varias reconstrucciones por segundo, por ello se prevé que
se obtenga informacién con puntos muy poco distanciados.

Figura 37. Ejemplo de trayectoria con indicacion de los puntos de reconstruccion.
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Los resultados de la reconstruccion de alturas para este caso se muestran en la
siguiente figura:

Global map after the mapping

150 200 SEE -300

Figura 38. Ejemplo de reconstruccion.

A simple vista, se puede apreciar que son resultados bastante satisfactorios. Sin
embargo es mejor apreciarlo desde un punto de vista de planta cuantificando los
errores de la reconstruccién respecto al mapa teérico ideal.

Para ello, se han dividido los errores en intervalos discretizando los valores para una
mejor observacion (ver Figura 39). En ella, se puede apreciar como en los lugares
cercanos a la posicion del robot los errores son evidentemente muy bajos, del orden
de 1 m y segun aumente la distancia del punto al robot el error va creciendo. De hecho
existen zonas como los picos de las montafias o los minimos de los valles donde el
laser no ha recogido informacién ninguna, en esos puntos el error es grande.

UPM Enrique del Sol Acero 73



[=1

50

100

150

200

280

Figura 39. Discretizacion de la reconstruccion.

El error de reconstruccion correspondiente a la Figura 39 se representa en la Figura
40. En ella, se puede observar un error aceptable como ya se ha comentado en casi
todos los lugares excepto en las zonas cuya visibilidad se ha visto muy reducida.
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i

Figura 40. Error de reconstruccion discretizado.
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Para el célculo del hiperplano de regresion es necesario que al menos caigan 3 puntos
en una misma celda. Dado que este algoritmo calcula un plano para cada celda por
cada paso de simulacién y luego todos los datos son reinicializados, es necesario que
ocurra esa condicion para una misma matriz de lectura del laser. Esto no siempre
ocurre asi y es habitual encontrar un gran numero de celdas que no tienen 3 puntos de
impacto. Por ello en esas celdas no se puede calcular el hiperplano de regresién y se
han buscado otros métodos de calculo del gradiente basados en la informacion de las
celdas vecinas, consistente en el calculo a nivel celdas utilizando las alturas, como
muestran las siguientes expresiones:

. — 7.
GX; =1L I (52)
1 escala

Zi—Z;,4

GY. — -t “Zi-1
Y escala

(53)

Donde:

e GX;j es el gradiente en direccion X del elemento (i, /).
e GY;; es el gradiente en direccion Y del elemento (i, /).

e escala es el valor del lado de la celda.

Este método denominado “calculo del gradiente por filas y columnas” da resultados
muy aproximados y es valido para realizar los calculos sin mucha precision, pero en
cualquier caso ha sido el método que mejores resultados ha aportado si bien el valor
del gradiente calculado no esta centrado en la posicién de la celda en la que se
asigna. Es decir, el gradiente se encuentra desplazado.

La adaptaciéon del método de calculo de gradiente por filas y columnas consiste en
utilizar cuatro celdas adyacentes de forma simultanea y calcular los gradientes en
ambas direcciones utilizando los valores de las alturas de las cuatro celdas. Esto
soluciona el problema cuando se tiene una acumulacion de puntos cercanos pero con
menos de 3 impactos por celda.

Como mejora del método anteriormente descrito, se procedio al calculo de la regresion
utilizando varias celdas a la vez y estimando el mismo valor para todas ellas tal y como
se describe a continuacion.
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Figura 41. Ejemplo de asignacion de puntos de colision para el célculo de gradientes.

En primer lugar se calculan los gradientes de todas las celdas donde el numero de
puntos de impacto es igual o superior a 3. Es decir, se calcularian los gradientes de las
celdas (2, 2), (2,7), (2, 8), (3, 7) y (3, 8).

En segundo lugar se procede a recorrer el mapa desde la celda (1, 1) en grupos de
cuatro calculando los planos de regresion como si el grupo de cuatro celdas fuesen
solo una y rellenando informacién solo para las celdas que no tengan ya calculado el
gradiente. En este caso se calcularian los gradientes para los grupos de celdas de la
forma siguiente:

e Celdas (1, 1), (1, 2), (2, 1) y (2, 2) donde todas tomarian el valor del gradiente
calculado en (2, 2)

e Celdas (1, 3), (1, 4), (2, 3) y (2, 4) donde se calcularian los gradientes segun X
e Y y se tomarian igual para las cuatro celdas puesto que ninguna de ellas
tiene mas de dos puntos de impacto.

e Celdas (1,7), (1, 8), (2, 7) y (2, 8). Como las celdas (2, 7) y (2, 8) ya tienen un
valor calculado, este se mantiene pero la informacion de los 6 puntos de
impacto se utiliza para calcular los gradientes de las otras dos celdas que no
poseen informacion.
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e Celdas (3, 1), (3, 2), (4, 1) y (4, 2) se calcularia un unico gradiente comun para
todas.

e Celdas (3, 3), (3, 4), (4, 3) y (4, 4). No se posee informacién suficiente para el
célculo de un plano puesto que solo hay 2 puntos de impacto. Lo mismo ocurre
para el siguiente grupo de cuatro celdas.

e Celdas (3, 7), (3, 8), (4, 7) y (4, 8). Se calcularia el gradiente con los 6 puntos
de impacto y Unicamente se actualizaria el valor de las celdas de la fila 4.

e Celdas (5, 1), (5, 2), (6,1) y (6, 2). No se posee informacién suficiente.

e Celdas (5, 3), (5, 4), (6, 3) y (6, 4). Se calcularian los gradientes con los 4
puntos de impacto y su valor se anadiria a las 4 celdas que forman la
cuadricula.

4.10. ASIGNACION DE CONFIANZAS

Con el concepto “confianza” se desea reflejar el nivel de seguridad que se posee sobre
la informacion que alberga una celda. Esta seguridad va relacionada intimamente con
el numero de puntos de impacto del laser en su interior y el tiempo transcurrido desde
su reconstruccion, ya que se trata de entornos con objetos dinamicos.

Debido a la forma de un entorno y la posicion de un robot dentro del mismo, es posible
que se produzcan un elevado numero de puntos de impacto en algunas celdas y muy
pocos 0 ninguno en otras muy cercanas. Adicionalmente, y dependiendo del tamario
de celdas utilizadas, es probable que los puntos de impacto dentro de una misma
celda estén muy concentrados en una zona determinada y no haya ninguno en el resto
del area. Por estas razones, la confianza en el valor de una celda va relacionada no
sélo con el numero de puntos de impacto que caigan sobre ella, sino también con su
dispersion dentro de la celda.

Para evaluar la dispersion se han valorado diferentes alternativas, sobre todo desde el

punto de vista de coste computacional, (tiempo de ejecucién y requisitos de memoria).
Entre ellas esta calcular las coordenadas del punto medio de impacto y tomar la
dispersion como la desviacion tipica y otros métodos estadisticos. Finalmente, el
algoritmo mas rapido y de menor requerimiento de memoria ha sido el algoritmo
basado en la creacién de subceldas.

Este método, consiste en dividir cada celda en “n” subceldas, tal y como muestra la
Figura 42 donde la celda se ha dividido en 16 partes.
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Figura 42. Division en subceldas.

El algoritmo de asignacion de confianzas calcula la subcelda asociada a cada punto de
impacto mediante la lista de los puntos de impacto de una celda con sus coordenadas.
A continuacion, se cuentan las subceldas en las que al menos hay un punto de
colision. La confianza se calcula dividiendo el nimero de subceldas con puntos de
colision entre n con objeto de obtener un valor que varie ente 0 y 1. El valor de n
elegido durante las pruebas ha sido 16, este numero debera ser mayor cuanto mayor
sera el tamario de la celda.

Como se ha visto, con este procedimiento se tiene en cuenta la distribucion de los
puntos de impacto y se calcula la confianza en base a dicha distribucién, pero ademas
de este criterio, se deben tener en cuenta otros parametros como son las distancias
del Iaser a los puntos de impacto.

Debido a los errores de medida del laser y mas aun a los errores en la estimacion de
la orientacion (alabeo, cabeceo y guifiada), los errores de medida en las distancias
crecen al aumentar la distancia de colision. Por ello, es util penalizar la confianza de
los puntos de impacto lejanos para proporcionar una incertidumbre sobre los mismos
de tal forma que no tenga la misma credibilidad un impacto del laser a 5 metros que
otro a 70 metros por ejemplo. Para ello se ha aplicado una funcién correctora de la
siguiente forma:
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Coeficiente Corrector

1,20

1,00
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Figura 43. Coeficiente corrector en funcion de la distancia medida.

Asi, para valores de distancia medida del laser pequefios (menores del 75% del
alcance maximo) se aplica un factor poco penalizador y para medidas de distancia de
valores elevados (mayores al 75% del alcance maximo) se aplica un factor penalizador
mas elevado. Esta forma de correccion esta basada en que el error de medida del
laser no depende de la distancia medida, pero sin embargo, puntos de colision muy
lejanos se ven claramente afectados por pequefios errores en la estimacion de la
actitud del robot.

El coeficiente corrector mostrado en la Figura 43, se puede expresar matematicamente
mediante las siguientes expresiones:

-0.2D
= . 0
! 0.75 RangoMax + si D < 75%RangoMax
(54)
—0.6(D — 0.75 RangoMax) )
= +0.8 si D > 75%RangoMax (55)

0.20 RangoMax
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El diagrama de flujo de la asignacion de confianzas seria por tanto el siguiente:

Lista de puntos de
impacto

Clasificacion de puntos
de impacto en subceldas

Recuento de subceldas
impactadas

Aplicacion de factor de
correccion

Figura 44. Proceso de asignacién de confianzas

La Figura 45 muestra de la confianza calculada mediante la simulacién de una
trayectoria del robot por un camino montafoso (Figura 37):

F=n7
F s
s

[

0.2

0.1

Figura 45. Asignacién de confianzas
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La confianza se muestra alta para las zonas cercanas a la posicion de simulacién del
robot en cada paso y se muestran bajas cuanto mas se aleja de dichas posiciones.

Habitualmente, en las siguientes reconstrucciones se puede obtener una confianza
diferente para una celda. En apartados posteriores se describiran los procedimientos y
algoritmos para la fusion de dicha informacién.

Otros métodos probados para estimar la confianza

Inicialmente, se desarrollé otro procedimiento para la asignacion de confianzas, pero
este ultimo basado en subceldas es el que mejores resultados ha aportado.

El método inicial se basaba en un recuento global del nimero de puntos impactados
en una celda, sin tener en cuenta la dispersién de los mismos. El recuento era
acumulativo, de forma que se sumaban los puntos de impacto de toda la simulacion,
acumulando los de medidas sucesivas del laser y la confianza se variaba de forma
exponencial con asintota en 1. De forma esquematica se procedia de la siguiente
forma:

Comienzo de la lectura de la matriz del laser, célculo de los puntos de impacto para
cada celda y suma del numero de puntos totales.

Calculo de la confianza mediante:

C=1—-e™""
(56)

Donde n corresponde al numero de impactos sobre cada celda y 7 la constante de
crecimiento que es un parametro a ajustar. Para calcular un valor aceptable de la
constante de crecimiento de la confianza se estimaba el nimero minimo de impactos
necesarios para considerar una confianza maxima sobre la celda y de forma que para
n igual a 3, la confianza fuese del 95 por ciento. Este método conlleva varias
desventajas respecto al elegido definitivamente:

e La obligatoriedad de llevar una cuenta constante de los puntos de impacto.

e La suma acumulada de puntos de impacto implicaba usar funciones de
conversion logaritmicas para calcular al final de cada ciclo el nimero de puntos
de impacto acumulados para poder sumarlo al numero de puntos de impacto
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en la lectura nueva del laser. Ya que las confianzas al proceder de una
exponencial del numero de impactos no se pueden sumar directamente, sino
que habia que calcular el numero de puntos de impacto acumulados mediante
la confianza acumulada, sumar con el nuevo numero de impactos y volver a
aplicar la exponencial.

e El calculo de la constante de crecimiento de la exponencial resultaba algo
arbitrario.

¢ No se tenia en cuenta la dispersion de los puntos.
4.11. Asignacion de ocupacion

La ocupacién de una celda mide la dificultad que tiene el robot para viajar por ella,
teniendo en cuenta su pendiente. El nivel de ocupacion de la celda influye en el
momento de la planificacién del recorrido que el robot debe realizar, eligiendo por
ejemplo el camino de menor dificultad entre varios que lleguen al mismo sitio.

Para calcular la pendiente de la celda se parte del gradiente de la misma, que
representa la tangente del terreno segun direcciones X e Y.

Como primera aproximacién al calculo de la ocupacion se ha designado un valor de 1
(ocupada) a aquellas celdas cuyo médulo del gradiente sea de 0.3 (maxima pendiente
que puede traspasar un robot en la simulacion).

Para las celdas cuyo médulo del gradiente sea inferior, se calculara la ocupacion
mediante una funcidn lineal que aumenta la ocupacién desde médulo del gradiente
nulo hasta modulo igual al valor maximo admisible.

Este método, a pesar de ser extremadamente sencillo es eficaz para su utilizacion en
la planificacion.

Se puede no obstante utilizar otros criterios, como basarse en el valor del gradiente
en ambas direcciones y cuando alguna de ellas supere un valor critico considerar la
celda como ocupada. En cualquier caso es una decisién fuertemente ligada al
algoritmo de planificacion de trayectorias utilizado.

Como muestra, el ejemplo de la trayectoria ya mostrada en partes anteriores del
presente proyecto.
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Se puede observar el mapa de la

Ocupacidn

Figura 46 formado por semicirculos concéntricos distribuidos de manera mas o menos
uniforme. Dichos semicirculos corresponden a los impactos del laser sobre el terreno.
El fondo indica las zonas de las que no se posee informacién sobre la pendiente del
terreno y el modulo del gradiente viene coloreado segun la escala situada a la
derecha.

A continuacion se van a mostrar unas pruebas sobre un recorrido nuevo realizado en
una distancia corta y a pequefia distancia entre cada punto de lectura del Iaser (Figura
47). Se puede apreciar unos puntos azules entre una montafia grande, una pequefa y
un valle también grande. La trayectoria tiene una longitud de 10 m y con una distancia
de 0.5 m entre punto y punto. Como las distancias son grandes, solo merece la pena
centrarse en las zonas donde el |aser tiene alcance por lo que se han eliminado de las
imagenes sobre la ocupacion las zonas sin importancia. Aun asi conviene centrarse en
la parte central de la imagen que es donde se recopilado mayor informacion, por ello el
error al comparar la reconstruccion con los resultados tedricos presenta alli la menor
cuantia.
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Figura 47. Trayectoria simulada mediante puntos muy cercanos entre si

En esta imagen (Figura 47), se puede observar la trayectoria rectilinea del robot,
mientras que en la siguiente imagen se tiene la ocupacion teérica en base al médulo
del gradiente. Se puede observar como la ocupacion es minima en el suelo y en
determinados puntos de las parabolas que componen el relieve alcanza el valor
maximo. Es de esperar que en la zona donde el robot esta transitando los valores
reconstruidos sean muy parecidos a los valores teéricos y con ello el error se
minimice. Pero en cambio, en las zonas alejadas donde la visibilidad del laser es
reducida el error puede ser mayor.
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Figura 48. Ocupacion tedrica dados unos gradientes conocidos

Figura 49. Reconstruccion de la ocupacioén para la trayectoria de la Figura 47
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En la Figura 48 se observa la ocupacion tedrica calculada conociendo todos los
gradientes del area analizada y en la Figura 49 se puede apreciar la ocupacion
calculada utilizando las alturas reconstruidas.

A continuacion se puede observar el error obtenido al comparar ambos calculos.

Error ocupacion

.-

Figura 50. Error en valor absoluto de la reconstruccién de la ocupacion

Como se puede observar, los resultados son buenos en las cercanias al robot. En las
zonas lejanas pero con ocupacion igual a la unidad el error es nulo, en cambio en las
zonas donde la ocupacion es inferior a la unidad hay mayor error. Esto se puede deber
al método del calculo de los gradientes ya que como se ha mencionado anteriormente,
no se utiliza el mismo método para las celdas en las que hay puntos de colisibn como
en las que no los hay. No obstante, al tratarse de puntos alejados, la influencia del
error es mucho menor ya que este se vera reducido cuando el robot se acerque a
ellos.
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4.12. LIBERTAD E INFORMACION DE PUNTOS DE NO IMPACTO

Los algoritmos que aqui se presentan usan la informacion que pueden aportar los
rayos del laser que pasan suficientemente cerca del suelo como para poder afirmar
que el terreno por donde ha pasado esta libre de obstaculos.

Figura 51. Representacién de las posibles trayectorias de impacto del laser.

Cuando el laser del robot lanza un rayo laser pueden ocurrir fundamentalmente tres
casos:

El rayo no impacta sobre ningun objeto y alcanza la distancia maxima sin pasar
en la cercania de ninguna superficie.

El rayo no impacta sobre ninguna superficie pero pasa por la cercania de la
superficie en su trayectoria.

El rayo impacta sobre una superficie y evidentemente tiene que aproximarse en
algun momento a dicha superficie.

Se llamara altura critica () a la altura que se va a considerar cercana a la superficie.
Esta altura puede estar relacionada con la altura del obstaculo moévil a detectar o con
la altura del obstaculo fijo maxima admisible para ser superada por el robot.

Con la asignacién de libertad o no ocupacién se pretende obtener informacion de la
mayor longitud posible del haz del laser, no unicamente del punto de impacto. Para
tener una idea del aumento de informacion que podria suponer se puede estimar
suponiendo que el robot lanza un rayo perfectamente paralelo al suelo, y que este rayo
impacta con un objeto lejano a la distancia maxima de alcance del laser, suponemos

80 m. Si se tomara informacién del laser cada - de la longitud de la celda, se estaria
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tomando puntos de informaciéon adicional para la reconstruccion del
terreno. Con lo cual se aumenta considerablemente (De 1 a 400 veces) la informacion
proporcionada por el laser. Este calculo esta realizado evidentemente para unas
condiciones Optimas de disparo del laser en el que el rayo es permanentemente
paralelo al suelo, eso no sucedera salvo contadas ocasiones pero es una buena forma
de comprobar las capacidades maximas de este método para aprovechar la
informacion normalmente no utilizada.

Metodologia parala obtencion de informacion adicional

Para la obtencion de informacién adicional se propone un algoritmo basado en bucle
que recorre el vector formado por el laser en incrementos de longitud parametrizados
segun la longitud de la celda. Se propone dividir la longitud de la celda entre 5 o0 10
partes. De esta forma para punto del recorrido se puede calcular las coordenadas

de dicho punto respecto al sistema fijo realizando las mismas transformaciones
que se utilizaban para calcular el punto de impacto en la reconstruccion de las alturas.

Figura 52. Concepto de altura critica para la obtencién de informacién adicional.

De esta forma se obtendrian las coordenadas de una serie de puntos resultantes de
dividir el rayo en el numero elegido de segmentos. Posteriormente se pasara a
comparar la altura de cada punto con la altura que se posee previamente sobre la
informacion del suelo. Conviene recordar que aunque el robot puede comenzar a
reconstruir el terreno partiendo del mapa vacio, una funcionalidad importante del
sistema es corregir un mapa que ya se tiene del terreno. Por ello es posible partir de
un conocimiento mas o menos fiable del terreno que permitira realizar la comparacion
de alturas. La comparacién de alturas trata de descartar todos los puntos cuya altura
sea superior a la citica puesto que se considerara que no aportan informacion al estar
demasiado separados de la superficie. En el caso dibujado es posible que solo 3 o0 4
puntos cumplieran la condicibn mencionada. En ese caso se utilizaran las
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coordenadas de dichos puntos para dar a la celda correspondiente un aumento de la
probabilidad de no ocupacion.

El algoritmo que se utilizaria seria el siguiente:

Lanzamiento del
rayo laser

Asignacion de Parametrizacion
libertad del rayo

Recorrido del rayo
calculando las
coordenadas de
cada punto

Z punto > Z suelo
&

Z punto < Z suelo + Zcritica

Figura 53. Esquema del algoritmo de asignacion de libertades
Andlisis del rendimiento en la ejecucion

Si se analiza la ejecucion del software corriendo esta caracteristica de asignacion de
libertades se aprecia un notable aumento del tiempo de ejecucién. Y son los
subprogramas encargados de proporcionar esta funcionalidad los que consumen mas
tiempo. Por lo tanto, se puede afirmar que al afiadir la funcionalidad de asignacion de
libertades aumenta considerablemente el tiempo de ejecucién, mientras que es
probable que la utilidad de los resultados conseguidos no aumente de la misma forma.
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Funcion Llamadas

Tiempo Total

Tiempo propio

SimDataMapping 1 944.382 s 3.319s
SimLaser 5 524.629 s 180.254 s
M45DataMapping 5 419.061 s 6.248 s
Roots 2717715 341.375s 341.375s
FreedomAssignment 43383 324.968 s 95.573 s
Local2FixedCoord 1801875 136.363 s 136.363 s
Coordinates2Cell 1801890 98.985 s 59.986 s
QuadsNumber 10 68.961 s 35.119s
MapCenterindex 2377899 51.370 s 51.370 s
ConfidenceAssignment 5 33.841s 0.561 s
Cell2Coordinates 576009 33.841s 21.470s
Heigh and Gradient 5 3.958 s 3.506 s
Estimation

LowResMap fusioén 5 3.755 s 3.272s
Create LRM 5 2.119s 2119s
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Create HRM 5 1.652 s

Layers Fusion 10 0.982 s
FusionTemporal2Local 5 0.499 s
Spherical2Cartesian 43385 0.390 s

Subprogramas principales utilizados en la simulacion del entorno:

e SimDataMapping: 3.319s > 0.63 %
e SimLaser: 180.254 s 2 34.33 %

e Roots: 341.375 > 65.03 %

Subprogramas principales utilizados para la funcionalidad real

M45DataMapping: 1.52 %

e FreedomAssignment: 23.02 %

e Local2FixedCoord: 32.85 %

e Coordinates2Cell: 14.4 %

e QuadsNumber: 8.46 %

e MapCenterindex: 12.37 %

e ConfidenceAssignment: 0 %

e Cell2Coordinates: 5.17 %

e Heigh and Gradient Estimation: 0.81 %
e LowResMap fusién: 0.78 %

e Create LRM: 0.51 %
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e Create HRM: 0.39 %

e Layers fusion: 0 %

e FusionTemporal2Loca: 0 %
e Spherical2Cartesian: 0 %

Estas cifras indican cuantitativamente lo comentado anteriormente de forma
cualitativa. La funcionalidad introducida viene representada por la funcion
FreedomAssignment y se observa que consume el 23.02 % del tiempo siendo la
segunda funcién que mas consume en todo el proceso.

Interpretacion de los resultados

¢ Qué informacion aporta la llamada asignacion de libertad? Suponiendo que se posee
un conocimiento previo del terreno en forma de mapas, la libertad estaria dando una
informacion adicional a los puntos de impacto del laser. Una informacién que consiste
en que el laser ha podido atravesar dicha zona ya que ha pasado entre la altura del
suelo y la critica, por ese motivo se pueden sacar las siguientes conclusiones:

o El area atravesada por el laser y tomada como libre no ha sido ocupada por
ningun objeto desde la creacién del mapa tomado como referencia.

e A falta de informacion de la capa de gradientes, se puede utilizar la capa de
libertades como complemento a la de ocupacion. De esta forma donde no se
tenga informacion del gradiente y si se posea de la libertad, se tomara 1 —
libertad como el nivel de ocupacion en dichas celdas.
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Dcupacion

Libertad

Figura 54. Reconstruccion de la ocupaciéon y asignacién de libertad para una
trayectoria simple

Se puede apreciar que al tener en cuenta la capa de libertad la informacion obtenida
del terreno es mucho mayor. Conviene por tanto no desperdiciar esa informacion y
utilizarla siempre que no se tengan datos sobre el gradiente del terreno para calcular la
ocupacion real. La capa de libertad se convierte en una hipotesis de trabajo para el
robot, representando una alternativa para cuando este debe planificar una trayectoria y
son necesarios datos adicionales que no se poseen. No es representa una certeza
absoluta sobre el grado de ocupacion del terreno sino que es Unicamente un punto de
partida para comenzar el movimiento.

Uniendo la informacién de ambas capas en una sola se puede comprobar cémo la
cantidad de informacién recopilada usando la capa de libertad es mucho mayor que
sin usarla. En el ejemplo que se esta analizando se pasa de informacion obtenida
sobre la ocupacion para 726 celdas a informacién sobre 2239 celdas lo que
corresponde a un aumento del orden del 300 % en cantidad de informacion. Aunque
no es totalmente cierto que una probabilidad muy baja de que la superficie este libre
sea equivalente a que exista una probabilidad alta de que esté ocupada, a falta de
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informacién si se puede utilizar esta. Graficamente se pueden comprobar los
resultados con una mayor percepcién de las mejoras encontradas. Con todo esto se
puede concluir que dependiendo de la potencia de calculo disponible, es util disponer
de este nuevo algoritmo puesto que aumentando el tiempo de calculo en un 23 %, el
rendimiento en la obtencion de informacién aumenta en un 300 %.

Ocupacion sirmple

Figura 55. Ocupacion calculada de forma simple
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Ocupacidn con mezcla de capas

Figura 56. Ocupacioén calculada con la informacion proveniente del algoritmo de asignacion de
libertades

4.13. OPERACIONES SOBRE LOS MAPAS

En el proyecto final de carrera presentado, se pueden distinguir dos categorias de
fusion de informacion:

e Fusion de la informacién existente en un mapa con la nueva informacion
procedente de la reconstruccion con el Iaser.

e Fusion de la informacion procedente de varios robots que colaboran en la
definicion de un mapa global.

A continuacion se detalla cada una de ellas.

4.13.1. Fusion de la informaciéon nueva con la informacion
existente en alta resolucion.

La informacion de alta resolucion que se reconstruye con la ultima adquisicion del
laser debe ser fusionada con la informacién previa del entorno (también disponible con
alta resolucion). Este es uno de los principales procesos de todo el sistema de
mapeado ya que la forma de fusion de los datos influye mucho en los resultados
finales.

Como se esta trabajando con mapas dinamicos, puede ocurrir que al observar una
celda la informacién nueva sea similar a la informacién previa o sea totalmente
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distinta, si por ejemplo algun objeto mévil ha invadido el area analizada. Por ello, el
algoritmo no solo debe tener en cuenta la actualizacion de una celda por una mejor
observacion de la misma sino por un posible cambio en el contenido.

Como se ha definido anteriormente, se denomina aux_MapCell_local al mapa que se
reconstruye contando como Uunica informaciéon un escaneo del laser, este mapa
temporal se va fusionando tras cada lectura del laser con el mapa de alta resolucién
(HRM) que va acumulando la reconstruccién dentro de la misma area.

El algoritmo propuesto comienza comprobando la matriz de celdas del mapa temporal
aux_MapCell_local. Aquellas celdas que posean confianza no nula, contendran
informacién reconstruida con el ultimo escaneo y sera necesario fusionar dicha
informacién con la posible ya existente para la misma celda en el mapa de alta
resolucion. En este proceso se pueden considerar dos casos diferenciados:

e Los datos son similares.
e Los datos son muy diferentes.

Cuando no se produce un cambio brusco en las estimaciones del terreno, sino que
simplemente varia ligeramente la informacién recolectada en ese entorno, los datos
fusionados son el resultado de aplicar una ponderacién en funcién de las confianzas
del dato del mapa de alta resolucion y el mapa auxiliar.

datok * confianzak + datoaux_MapCell_local * Confianzaaux_MapCell_local

(295)

dato;.1 = - p
k+1 confianza, + confianza,,.qiq,

Para discernir si los datos son parecidos o no, se ha establecido un umbral de +10°
entre los gradientes. Este, es un parametro ajustable con la practica y con las
simulaciones posteriores que se han de hacer en Microsoft Robotics Studio.

Si por el contrario el gradiente del mapa auxiliar es claramente diferente del
almacenado en el mapa se consideran tres posibilidades:

¢ Hay una diferencia importante en el valor de la confianza. Lo que significaria
que uno de los dos valores es mas fiable que el otro y se procederia a utilizar el
valor mas fiable de los dos.
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¢ Hay un valor de confianza parecido y pequeno. En este caso, los dos valores
parecen ser sensibles a la parte de la celda estimada por lo que el valor de
mayor confianza sera utilizado.

e Hay un valor de confianza parecido y elevado en ambos casos. En esta
situacién, lo mas probable es que haya habido un cambio en el entorno y como
tal, la nueva estimacion sustituye a la antigua.

Aqui se produce otra disyuntiva, cuando se trata de distinguir que significa confianza
mayor. Se esta considerando que unos datos tienen confianza mayor que otros

. 2 . . .
cuando se cumple: Confianza,eqiga > (E + Confianza,) lo que equivale a decir que

hay al menos dos subceldas mas de observacion en las nuevas medidas que en las
acumuladas.

Este caso se puede dar en la practica cuando un robot detecte un cambio en la celda
con una gran visibilidad del mismo y se puede considerar informacion muy fiable, por
ello aunque provenga de una Unica medida se le dara la importancia necesaria y se
actualizara el mapa.
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Observacion de una celda
éConfianza # 0?

Gxmedida = Gx(k)
&

Gymedida= Gy(k)

¢Algo diferente con
confianza nueva menor?

¢Algo diferente con
confianza nueva mayor?

¢Algo diferente con
confianza nueva parecida?

Actualizacion ponderada de
Gx(k), Gy(k), H(k), libertad(k),
ocupacion(k)
Confianza(k+1)=max(Confianza
(k), Confianzamedida)

No se actualiza nada

Gx(k+1)=Gxmedida
Gy(k+1)=Gymedida
H(k+1)=Hmedida
Libertad(k+1)=Libertadmedida
Ocupacion(k+1)
=0cupacionmedida
Confianza(k+1)=Confianzamedida

GX(k+1)=GXmedida
Gy(k+1)=Gymedida

H(k+1)=Hmedida
Libertad(k+1)=Libertadmedida
Ocupacion(k+1) =Ocupacionmedida
Confianza(k+1)=1/16

Figura 57. Algoritmo de fusion de la informacion
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Se ha hablado mucho sobre la fusion de alturas, gradientes, ocupacién, libertad, pero
no se ha dicho nada sobre las capas de comunicacién y de sefial GPS. Para ellas no
existe fusion, dado que el ultimo valor sera el valido puesto que la calidad en la
recepcion de la sefial GPS y comunicacion puede variar con el tiempo. Por lo tanto,
para cuando una nueva medida sea incorporada al mapa, esta medida sustituira a la
anterior si existia y en el caso de que no fuera asi se afiadira a las medidas
existentes. Se hace notar que esta actualizacion solo se da en las celdas por las que
transita el robot.

Con este algoritmo se ha abordado la fusion de la informacion temporal con la
informacién acumulada, ambas en alta resolucién. Posteriormente a esta fusién la
informacién temporal sera reemplazada por la nueva medida y el proceso se repetira
ciclicamente.

4.13.2. Conversion de alta a baja resolucion

La informacién almacenada en el mapa de alta resolucién es inmediatamente
traspasada al mapa de baja resolucion (LRM). Adicionalmente, cuando el robot se
desplaza y el alcance de los sensores traspasa los limites del mapa de alta resolucion,
es necesario crear informacion de las nuevas celdas de alta resolucion basandose en
la informacion almacenada en las celdas de baja resolucion contiguas al mapa
anterior.

Considerando la primera conversion descrita, es necesario condensar la informacion
de varias celdas del HRM para dar lugar a una unica celda del LRM.

El numero de celdas del HRM que se deben fundir para dar lugar a una del LRM es el
siguiente:

N °celdas LRM equivalentes x Escala LRM
Escala HRM

N °celdas HRM = (26)

Este proceso ha sido dividido en dos partes, primero se realiza la fusion de las celdas
necesarias del HRM para dar lugar a un nuevo LRM,,.; , Mapa que representa un
mapa local con la resoluciéon adaptada a la del LRM. Posteriormente se situara el
nuevo LRM,., sobre el LRM, centrando el local en el punto correcto del global se
procedera a su fusién con el mismo algoritmo que se ha comentado anteriormente
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para fusionar una medida temporal con las medidas acumuladas del HRM. El proceso
es el siguiente:

High Resolution Map

Cambio de resolucion.
Obtencion de LRMiocal.

Redimensionamiento de
LRMIocaI.

Obtencion de LRM'

Fusion de LRM con LRM'

Figura 58. Esquema de actualizacion del HRM

Cambio de resolucioén

El proceso de cambio de resolucion se realiza condensando el niumero adecuado de
celdas del HRM mediante una media ponderada segun la confianza de cada celda.

En este caso, se calcula la media ponderada de todos los elementos de la capa de
informacion correspondientes a una celda de baja resolucién con los elementos de la
capa de confianza y resultan un determinado dato que se tomara como valor para
obtener una celda del LRM,,.,- De esta forma, recorriendo la matriz HRM por grupos
de elementos se va creando el nuevo mapa local con la nueva resolucion.
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Capa de informacién del HRM

Capa de confianza del HRM
Figura 59. Ejemplo de actualizacién del HRM mediante media ponderada por las confianzas

La expresiéon que resume el algoritmo utilizado es:

b Eﬁﬁ’ Confianza (i,j))HRM - Dato(i, j)HRM
. 27)
j2 (

Dato (i, j,)LRM = __
o Tk =2 5I2 Confianza (i, j))HRM
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Ajuste de dimension

Como segundo paso para la fusion al LRM esta el redimensionamiento del LRM 4
para obtener el LRM'. Para realizar esto se debe localizar el centro del HRM dentro del
LRM y copiar la matriz obtenida LRM,,.,; en el lugar correcto dentro de una matriz
vacia y rellena de ceros.

Figura 60. Proceso de fusion del HRM con el LRM. Primero se redimensiona el HRM
obteniendo un mapa en baja resolucion de un tamano local. Posteriormente dicho mapa se
posiciona adecuadamente dentro de un mapa de dimensiones globales.

Fusion de lainformacion

Para la fusion de la informacién del nuevo mapa creado LRM’ con el LRM que se
encarga de registrar las medidas acumulativas se emplea el algoritmo de fusion

UPM Enrique del Sol Acero 103



comentado anteriormente en el apartado dedicado a la fusién de datos del HRM. El
algoritmo, basado en comparacion de confianzas e innovaciones de los datos ha dado
un buen resultado en el proceso de reconstruccion.

4.13.3. Conversion de baja a alta resolucion

A medida que el robot se va desplazando por el mapa surge la necesidad de renovar
el mapa local (HRM) porque su alcance se sale de las dimensiones de este. Es en
esos momentos cuando cobra especial importancia el paso de informacion del LRM al
HRM con el objeto de renovar la informacién local a medida que se produce el
desplazamiento del robot.

Este proceso es parecido al proceso inverso que ya se ha comentado pero con
algunas diferencias importantes.

En primer lugar, hay que detectar el momento oportuno para la toma de los datos pero
€so0 ya se comentd en apartados anteriores y no se repetira aqui.

Posteriormente, se produce una copia de informacién del LRM al HRM teniendo en
cuenta la formula para adaptar el nimero de celdas. En este caso lo habitual es que
una celda del mapa de baja corresponda a varias celdas del mapa de alta. En esta
conversion de resolucion lo Unico que se puede hacer es dar a las celdas del HRM
correspondientes a una del LRM la misma informacion, puesto que no hay otra forma
de dividir la informacion.

Este proceso de copia de informacion se hace Unicamente para las nuevas celdas del
mapa de alta resolucion, respetando la informacién previa de las ya existentes. Para
ello, se obtiene la informacion del mapa de baja resolucién de la zona donde se sitla
el robot y se extendera en el mapa de alta resolucion. Este proceso se hace
transmitiendo la misma informacion a todas las celdas correspondientes.

En la Figura 61, se pueden observar dos fragmentos de ambos mapas. Se puede
apreciar como la informacién contenida en una celda del LRM se extiende a 4 celdas
correspondientes del HRM. Esto ocurre asi cuando la escala del LRM es el doble del
HRM.
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5.2 5.2 4.3 4.3

Ej. Si la escala del LRM es el
doble que el HRM 1 celda de
baja corresponderia a 4 celdas
de alta resolucion.

Figura 61. Transmision de informacién del HRM al LRM.

La Figura 62 izquierda muestra un ejemplo de un mapa de alta resolucién extraido de
una determinada area del LRM segun una vista del plano X-Z con objeto de ilustrar
como el contorno del mapa local queda un poco deteriorado al haber sido capturado
de un mapa de resolucion menor. La figura de la derecha muestra el mapa real de alta
resolucion. Este efecto I6gicamente se ve mas acusado cuanto mayor sea la diferencia
entre ambas escalas.

Figura 62. Comparacion de mapas de alta resoluciéon reconstruidos e importados
desde mapas de baja resolucién.
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5. Localizacion visual del robot.

5.1. INTRODUCCION

Si bien la calidad actual de los receptores GPS permiten un posicionamiento en
exteriores con una precision muy elevada, llegandose al orden del centimetro en
tiempo real, el principal inconveniente que presentan se debe a que la recepcion de la
sefal GPS no esta garantizada en todo tiempo y lugar.

Con el objeto de localizarse cuando la sefal GPS no esta disponible en algun sitio, el
robot combina diversas técnicas para obtener la estimaciéon de su estado. En primer
lugar, se dispone de la informaciéon de los sensores internos del robot como los
sensores inerciales y la odometria. Esta informacioén es fusionada mediante un filtro de
Kalman y se obtiene una estimacion del estado del robot (posicién y actitud) que
presenta como principal inconveniente la deriva con el tiempo ya que ambos
procedimientos se basan en navegacion incremental. Con el objetivo de establecer un
sistema de posicionamiento que permita reducir las derivas de la estimacion asi
obtenida se han desarrollado varios algoritmos que permiten la localizacion del robot
dentro del mapa de alta resolucion que esta construyendo.

Los sistemas de localizacion y mapeado simultaneo conocidos por su nomenclatura
inglesa como SLAM “Simultaneous location and mapping” son un campo muy activo
en la investigacién actual, sobre todo en interiores.

En el presente proyecto no se pretende realizar tal tipo de algoritmos, ya que se
dispone de posicionamiento global y tanto el robot como el mapa quedan
perfectamente referenciados, si bien las técnicas utilizadas derivan de las usadas en
las aplicaciones SLAM estandar.

El objetivo del proceso de localizaciéon visual es usar la informacion del entorno del
robot (lo que el robot detecta) para inferir cual es su localizacion dentro del mapa. Mas
detalladamente, se trata de usar la informacion que proporciona el laser, la cual
permite una reconstruccion parcial del entorno y a continuacién, “buscar” dicha
informacién en un mapa donde los elementos reconstruidos estan perfectamente
referenciados e inferir asi la posicion del robot.

Habitualmente, un EKF (Filtro de Kalman Extendido) es la base de ésta técnica, que
permite actualizar la estimacion del estado del robot basandose en las caracteristicas
del entorno usadas como marcas naturales.
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Las marcas naturales son caracteristicas que pueden ser facilmente reobservadas y
distinguidas del resto del entorno, por lo que deben ser facilmente reobservables
permitiendo ser detectadas por ejemplo desde diferentes posiciones y diferentes
angulos. A su vez, deben tener como principal caracteristica que sean distintas unas
de otras, con objeto de no confundirlas. Evidentemente, todo lo que se tome como
marca debe ser estacionario o bien conocer su posicion en el momento de la
deteccion. Asi, un robot podria usar de marca a otro si conociese su posicion en el
momento en que éste es detectado.

Mediante un EKF se puede mantener un registro de la estimacion de la posicion y de
su incertidumbre para todas las marcas y por lo tanto también para el propio robot.
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A continuacioén se puede observar un esquema de un proceso general:

Cambio en la
odometria/ INS

Escaneo Laser

EKF :
- Extraccion de
Actualizacion de Marcas

odometria

EKF Asociacion de

. Datos
Reobservacion

Nueva posicion
Estimada

Figura 63. Esquema general de un proceso SLAM

Habitualmente, se puede utilizar una estructura de filtro de Kalman fuertemente
acoplada, en la que tanto los estados procedentes de las estimaciones de la odometria
o los sistemas inerciales es fusionada en un unico filtro con la estimacion de la
posicion de las marcas.

En el caso del proyecto final de carrera, no se ha utilizado esta opcién y se ha utilizado
una estructura de acoplamiento débil con filtros de Kalman es cascada, debido a que
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existe un sistema de posicionamiento GPS que permite un posicionado muy preciso y
se evita ejecutar las tareas de localizacion visual cuando éste esta disponible.

Como indica la Figura 63, se produce una estimacion del estado (posicion y actitud)
del robot que sirve como modelo para predecir el estado en el instante posterior.
Como sefial de medida se utiliza la posicion del robot estimada a través del proceso de
localizacion visual. En dicho proceso, las marcas re-observadas en la reconstruccion
son localizadas en el mapa y estimar asi la posicion del robot.

Los siguientes diagramas intentaran explicar este proceso en mas detalle:

* ¥* % % % || %
|| e
. ' . V Ll W
4& ’ ’ ke %
a) b) c) d)

Figura 64. Diagramas que muestran el proceso de localizacion en base a
caracteristicas del terreno

El robot es representado en la Figura 64 por un triangulo de color negro, las estrellas
representan marcas y los rayos representan las medidas iniciales usando las
posiciones de las marcas. La figura b) muestra la nueva estimacion de la posicion del
robot en base al sistema inercial y odometria (triangulo blanco) y la posicién real
alcanzada por el robot en negro. En la figura c) el robot vuelve a localizar las marcas y
estimar su posicion relativa a ellas y por lo tanto estimacién de la posicion absoluta
que se introduce en el filtro para lograr una estimacion de la posicién final, indicada en
la d).

En el proyecto final de carrera se han implementado diferentes clases de algoritmos de
localizacion visual, que se detallan a continuacion.

5.2. ALGORITMO BASADO EN COMPARACION DE MAPAS

En lugar de la utilizacién de marcas, en este algoritmo se utiliza la reconstruccion local
del terreno visionado en un unico instante por el laser para generar un mapa parcial de
alta resolucion, a continuacion se desplaza el mapa con reconstruccion parcial sobre el
mapa de reconstruccion total hasta alcanzar la maxima similitud.
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Para generar el indice de similitud se han utilizado las capas de alturas y la capa de
gradientes de ambos mapas. Si bien la capa de gradientes es invariante al error de
posicion en altura (la altura es también estimada sin la ayuda del GPS) dispone de
menor informacion que la capa de alturas.

El algoritmo de desplazamiento de un mapa sobre el otro tiene dos fases claramente
diferenciadas. En primer lugar se realizan saltos a nivel celda, por lo que la salida de
esta parte del algoritmo consistira en la estimacion de la celda en la que mas
probablemente se encuentre el robot. Con un coste computacional mayor, se realiza la
estimacién al nivel subcelda, consiste en reconstrucciones tomando como punto de
partida subceldas y comparando la similitud, con lo cual la salida estimada es la
subcelda en la que mas probablemente se encuentra el robot.

Hipotesis de partida

En la primera parte del algoritmo de hay que hacer una serie de suposiciones para
comenzar la busqueda de la posicion del robot. Estas suposiciones son:

o No existe un error apreciable en la atitud del robot. Los angulos de Euler
proporcionados por el sistema son practicamente exactos. Solo existe error en
la posicion y este error esta acotado. Esta hipdtesis es razonable ya que la
precision en actitud de la unidad de medida inercial esta por debajo del grado.

¢ Inicialmente se supondra que la distancia del robot al origen de la celda es
conocida y exacta. Esta suposicion es necesaria para realizar la reconstruccion
del mapa local respecto del origen de la celda en lugar de realizarlo desde el
punto donde esté situado el robot. Mas tarde se justificara el porqué de esta
decision.
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Esta distancia denominada € sera la hipétesis de partida para el comienzo de la

busqueda ya que es la mejor aproximacién que se posee al estado del robot.

o El error de posicionamiento maximo esta acotado. Aunque la odometria tenga
un error que es en principio acumulativo, a fusién con las medidas inerciales
mediante el filtro Kalman mejora mucho las estimaciones y no es probable que
el funcionamiento sin GPS se alargue demasiado en el tiempo. Este algoritmo
esta preparado para actuar en ambientes donde el GPS se pierde de forma
ocasional por lo tanto el error estara acotado en un cuadrado de un
determinado numero de celdas. Por tanto no se buscara en todo el mapa de
baja resolucion sino que se busca en un area determinada, reduciendo con
ello los tiempos de computo.

Esquema del algoritmo principal a nivel celda.

Toma de medidas con
el laser

Creacion de un HRM
respecto al origen de
la celda supuesta

Determinacion area
de busqueda

Calculo del error para
cada celda con varias
metricas

Eleccion de la celda
con menor error
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Los primeros pasos son similares a los ya comentados para el proceso de
reconstruccion habitual del robot. En primer lugar se parte de la matriz de distancias
del laser. Posteriormente se realizan las transformaciones matriciales habituales para
la obtencidén de las coordenadas de cada punto de impacto. Con la Unica salvedad que
aqui no se reconstruye respecto al origen del sistema fijo sino que se reconstruye
respecto al origen de la celda donde se ha supuesto que se encuentra el robot.

La justificacion de por qué se elige como punto de referencia el origen de la celda es la
siguiente. Suponiendo que el estado real del robot sea el mostrado en la Figura 65, en
la que el robot no se encuentra en la esquina de la celda (caso mas habitual) y Y si se
hiciera una reconstruccién cuyo origen fuera el propio robot, ( bastante mas simple de
realizar en la practica puesto que no se necesita conocer las posiciones absolutas del
robot sino que Unicamente con las distancias medidas por el laser y la estimacion de
actitud) el resultado seria el mostrado en la Figura 66, en la que los mapas a comparar
quedarian muy desalineados.

A

Figura 65. Localizacién del robot en el momento de comienzo de la localizacién
visual

X

Figura 66. Desalineamiento de los mapas producidos por error en la estimacion
de la posicion del borde de la celda
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Por supuesto, el hecho de contar con una estimacién inicial de la posicion para tener

en cuenta una estimacion inicial de € reduce mucho dicho desalineamiento.

La determinacion del area de busqueda se hace en base a los errores previsibles
maximos que pueda tener la odometria. Habitualmente se ha estado tomando una
distancia variable entre 3 y 10 metros de radio en los ensayos. Por ello, se delimitan
las celdas del LRM que seran susceptibles de busqueda.

Figura 67. Mapas perfectamente alineados

Para la comparaciéon de mapas, una vez seleccionadas las celdas candidatas a
albergar al robot, se comienza extrayendo un mapa local centrado en el punto
caracteristico de cada una de ellas. De esta forma si se tienen 9 celdas del LRM
candidatas se tendran también 9 mapas de alta resolucién extraidos para comparar
con el mapa local realizado en los primeros pasos de la localizacién. El proceso de
extracciéon del mapa local centrado en cada celda sigue el mismo procedimiento que el
comentado en el apartado de extraccion de un HRM ya comentado. Se trata de
seleccionar el punto central del nuevo mapa, que en este caso sera el punto
caracteristico de cada una de las 9 celdas. Posteriormente se delimita la nueva area
de baja resolucién a capturar y se transforma en un nuevo mapa de alta resolucion. El
proceso se repetira ciclicamente con cada uno de las celdas candidatas. La Figura 68
ilustra de forma grafica el proceso.
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Figura 68. Extraccion de mapas

El HRM asociado a la primera celda candidata seria el sombreado rojo. En este caso
se ha mostrado con unas dimensiones de 3 x 3 celdas que coincide con la longitud de
testeo, pero esto no tiene porque ser asi. De esta forma, se tendrian 9 mapas de alta
resolucion, cada uno centrado en la celda correspondiente candidatos a ser
comparados por diversas métricas.

Las métricas que han sido probadas son las siguientes:
e Moddulo de las normas al cuadrado de los errores en el gradiente
o Norma al cuadrado de los errores en la altura
¢ Norma infinito aplicada a los gradientes
e Norma infinito aplicada a las alturas
e Combinacion dos a dos

Célculos realizados para la comparacién de mapas

a) Modulo de las normas al cuadrado de los errores en el gradiente
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La féormula aplicada para calcular esta métrica es la siguiente:

Donde:

error gradiente =/ e1? + e22 (28)

n
el = Z (GX localy, — GX candidatoy,)? (60)
k=1
n
e2 = z (GY local;, — GY candidatoy)? (61)
k=1

GX localy, es un elemento k de la matriz de gradientes segun la direccion X del
mapa reconstruido respecto al punto caracteristico de la celda donde se
supone situado el robot.

GY local, equivalente al anterior en la direccién Y.

GX candidato, es un elemento k de la matriz de gradientes segun direccién X
del mapa local generado a partir de una determinada celda candidata.

GY candidato, equivalente al anterior en direccion Y.

Esta métrica aplicada a todos los mapas candidatos centrados en cada una de las

celdas

candidatas produce como resultado de salida una celda 6ptima donde se ha

producido el error minimo.

Norma

Donde:

UPM

al cuadrado de los errores en la altura

error altura = Z (Z localy, — Z candidatoy)? (62)
k=1

Z local, corresponde a la altura medida en un elemento k de la matriz de
alturas del mapa reconstruido respecto al punto caracteristico de la celda
donde se supone situado el robot.

Z candidato, corresponde a la altura medida en un elemento k de la matriz de
alturas del mapa local generado a partir de una determinada celda candidata.
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Igual que antes se aplica esta métrica a todos los mapas generados a partir de las
celdas candidatas y se guarda la celda que presenta menor error. Esa celda sera la
Optima para esta métrica.

b) Norma infinito aplicada a los gradientes

E, = |GX1ocat — GXcandidatol (63)
Ey = |GY10ca1 — GY candidatol (64)
error gradiente,, = ||(E, + Ey)“oo (65)

Donde:

o GXipcar Y GXcgndidato SON las matrices de gradientes segun X de la
reconstruccion local y la reconstruccién respecto a cada celda candidata
respectivamente.

o GYiocar — GYcandidato iQual que las anteriores para la direccion Y.

e error gradiente es el elemento maximo de la suma de los valores absolutos de
ambas restas.

c) Norma infinito aplicada a las alturas
error altura,, = ||(Z local — Z candidato)||, (66)
d) Combinacion de las métricasay c
error gradiente total = error gradiente * error gradiente,, (67)
e) Combinacion de las métricas by d
error altura total = error altura * error altura,, (68)
Resultados obtenidos

La Figura 69 muestra la comparacion de los errores en la localizacién del robot al
describir una trayectoria arbitraria para un entorno generado en Matlab, utilizando las
tanto las métricas basadas en el gradiente como en la altura.

Datos del ensayo:
e Escala LRM=2m.

e Escala HRM =1 m.
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e Estimacién de error maximo de posicién = 14 m de lado

Errrores de Posicion

/‘ /0 ¢ ¢ g

N /
2%
"
N
/
\

—&— Distancia SLAM gradientes == Distancia SLAM alturas

Figura 69. Comparacion de errores en la estimacion de la posicion para dos métricas
diferentes.

Para un estudio de una trayectoria con 8 puntos de reconstruccién, se observa que la
meétrica basada en gradientes produce peores resultados que la basada en la
comparacion de alturas aunque es mas constante. No obstante, el error también
depende de la calidad del mapa de alta resolucién utilizada para la localizacion, ya que
es mas sensible al numero de puntos de colision la reconstruccion del gradiente que la
de la altura.

5.3. Algoritmo basado en reconstrucciéon a nivel subcelda

Una vez encontrada la celda que posee el menor error de entre todas las celdas
candidatas se puede proceder a ejecutar el algoritmo con precisidén subcelda. Este
proceso es similar al anterior pero se debe realizar una reconstruccion considerando
como punto de referencia de las celdas una serie de puntos de referencia de
subceldas tal y como indica la Figura 70.

El objetivo de este proceso es ajustar aun mas la posicion del robot por medio de
pruebas eligiendo el punto cuya prueba resulte mejor.

UPM Enrique del Sol Acero 117



Para ello se divide la celda tomada en el primer paso en 9 puntos:

Figura 70. Puntos de referencia a
nivel subcelda.
A continuacién, se realizaran reconstrucciones de las medidas tomadas por la matriz
del laser suponiendo situado al robot en cada uno de esos 9 puntos. Asi, tomando
como origen el punto caracteristico de la celda, la distancia del origen a cada punto
sera la distancia que se introducird en la matriz de traslacion para representar la
reconstruccion respecto a dicho punto caracteristico. La justificacién es idéntica al
caso de SLAM principal.

Cuando se ha obtenido el punto de menor error pueden ocurrir dos casos distintos:

¢ Que el punto de menor error sea el central, luego se considerara que se ha
llegado a un minimo y se para la busqueda dando ese punto como
coordenadas del robot.

e Que el punto de menor error sea uno de los 8 periféricos. En ese caso se
plantea una nueva busqueda tratando de minimizar los errores hasta llegar a
un punto de minimo error.

Para el segundo caso se procede a buscar el punto de minimo error entre los 3 puntos
adyacentes a uno periférico.

Figura 71. Puntos de referencia
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Como se puede apreciar en la Figura 71, cada punto de la periferia posee 3 puntos de
acceso inmediato. La nueva busqueda se centrara en esos 3 nuevos puntos
intentando minimizar con ello el error que se cometia anteriormente. Este proceso
ciclico podria converger a un minimo y hacer muy pequefio el error encontrando de
esa forma la posicién actual del robot. El proceso esta basado en ir desplazando la
busqueda por la direccion de menor error. No se garantiza con ello que se llegue al
minimo absoluto puesto que este podria presentarse aislado, pero es una forma de
intentar mejorar la estimacién producida por el primer meétodo.

En la practica se depende mucho de las capacidades de computo, por ello no es
conveniente dejar el proceso iterar constantemente, sino que es preferible elegir un
numero de iteraciones permitidas, y finalizando estas se dara por terminada la
busqueda y se escogera el punto de menor error de los encontrados como minimo.

Resultados obtenidos

En las siguientes pruebas se ha permitido una unica iteracién con lo que el
desplazamiento del minimo podria darse hasta el borde de la celda unicamente.

Errores nivel celda y subcelda

/
#‘T;MJ \<i=i=f

1 2 3 4 5 6 7 8 9 10 11 12 13

O R N WP UION OV

=@-Distancia SLAM alturas == Distancia SLAM subcelda

Figura 72. Comparacion de los algoritmos de nivel celda y subcelda

Datos del ensayo:
e Escala LRM=2m.
e Escala HRM =1 m.

e Tamanfo del cuadrado de celdas candidatas = 14 m de lado
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Se aprecia como con frecuencia el algoritmo de nivel subcelda mejora sensiblemente
los resultados del nivel celda, por lo que la estimacién de la posicion del robot es
mejor.

En general, se observa que cuanto mas abrupto es el entorno sobre el que se ejecuta
el algoritmo, mejores resultados se obtienen. Asi, en un terreno practicamente plano
sin objetos de tamano importante alrededor, el algoritmo de localizacion como es
l6gico pierde su eficacia. Este hecho no se puede considerar en si un problema, ya
que la pérdida de senal GPS se produce habitualmente porque grandes objetos
“hacen sombra” al receptor del robot y por lo tanto, deben existir objetos en las
cercanias del robot.

5.4. METODO SIFT

Introduccion

La busqueda de imagenes coincidentes es fundamental en multitud de problemas de
visién por computador, incluyendo reconocimiento de objetos en un escena, resolver
estructuras 3D de multiples imagenes, correspondencia estéreo y otros. En este
capitulo se describiran caracteristicas de imagenes que tienen algunas propiedades
que las hacen adecuadas para la coincidencia entre diferentes imagenes de un mismo
objeto o escena. Las caracteristicas son invariante ante el escalado y rotacion y
parcialmente invariante ante cambios en la iluminacion y punto de vista de camara 3D.
Estan muy bien localizadas tanto en el dominio espacial como en el dominio de la
frecuencia reduciendo las probabilidades de oclusion o ruido. Un gran numero de
caracteristicas pueden ser extraidas de imagenes tipicas con algoritmos eficientes. De
hecho las caracteristicas son altamente distintivas, lo que permite a un Unico punto
caracteristico ser encontrado entre una gran base de datos de puntos caracteristicos
dando las bases para el reconocimiento de objetos dentro de una escena [13].

El coste de la extraccion de estas caracteristicas esta minimizado haciendo un
desarrollo de filtros en cascada en los que las operaciones mas costosas se
desarrollan unicamente a los puntos que pasan el test inicial. Las principales etapas
para generar el set de imagenes son:

o Deteccion de extremos en el espacio de escalas: la primera etapa en la
busqueda computacional busca sobre todas las escalas y emplazamiento de
las imagenes. Esta implementada de forma eficiente mediante una diferencia
de funciones gaussianas para identificar potenciales puntos de interés que son
invariantes ante escala y orientacion.

e Localizacion de puntos caracteristicos: en cada emplazamiento de los
candidatos, se busca un modelo detallado para determinar el emplazamiento y
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la escala. Los puntos caracteristicos son seleccionados en base a medidas de
su estabilidad.

e Asignacién de orientacion: una o mas orientaciones son asignadas a cada
punto caracteristico basadas en direcciones del gradiente de la imagen. Todas
las operaciones siguientes son realizadas teniendo en cuenta que la imagen ha
sido transformada respecto a su orientacion, escala y emplazamiento inicial,
dando de esa forma invarianza respecto a dichas transformaciones.

e Descripcion de puntos caracteristicos: los gradientes locales de la imagen son
medidos a una escala seleccionada en una region centrada en cada punto
caracteristico. Son transformados en una representaciéon que permite cambios
en la forma y en la iluminacion.

Esta técnica ha sido llamada Transformacion de Caracteristicas Invariantes a Escala
(SIFT) ya que transforma los datos de una imagen a coordenadas invariantes a
escalado relativas a sus puntos caracteristicos.

Para emparejado y reconocimiento de imagenes, los puntos SIFT son primeramente
extraidos de un set de imagenes de referencia y almacenados en una base de datos.
Entonces, para una nueva imagen, se le extraen sus caracteristicas de forma
individual y se la compara con las caracteristicas almacenadas en la base de datos
encontrando puntos caracteristicos candidatos basandose en la distancia euclidea.

Los descriptores de puntos caracteristicos son altamente distintivos, 1o que permite a
un unico punto caracteristico ser encontrado con alta probabilidad dentro de una gran
base de datos. Sin embargo, en una imagen recargada habra muchos puntos
caracteristicos pertenecientes al fondo que no podran ser marcados dentro de la base
de datos haciendo crecer con ello los resultados falsos en lugar de los correctos. Las
coincidencias correctas podran ser filtradas del set completo identificando
subconjuntos de puntos caracteristicos que son congruentes con el emplazamiento del
objeto, la escala y la orientacion de la nueva imagen. La probabilidad de que varios
puntos caracteristicos coincidan en esos parametros de casualidad es mucho menor
que para un punto caracteristico individual. La determinacion de esos grupos
consistentes puede ser realizada rapidamente mediante una eficiente tabla hash
implementada gracias a la transformacion de Hough generalizada [13].

Cada juego de 3 o mas caracteristicas que concuerdan en un objeto y su pose es
estudiada de forma mas profunda para su verificacion detallada. Primeramente se
realiza una estimacion por minimos cuadrados para afinar la pose del objeto.
Cualquier otra caracteristica de la imagen consistente con esa pose sera identificada,
y las demas seran descartadas. Finalmente una computacion detallada es realizada en
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base a la probabilidad de que un set particular de caracteristicas indique la presencia
de un objeto, dando la precision de la busqueda y un numero de las coincidencias
falsas probables. Los objetos que pasan todas estas pruebas podran ser identificados
correctamente con una alta probabilidad [13].

5.4.1. Deteccion de extremos en el espacio de escalas

Como se ha descrito anteriormente, se detectan puntos caracteristicos usando una
serie de filtros en cascada, lo que provee de eficientes algoritmos para identificar
emplazamientos de candidatos que seran examinados profundamente.

La primera etapa de la deteccion de puntos caracteristicos sera identificar
emplazamientos y escalas que puedan ser asignadas de forma repetitiva bajo
diferentes vistas de un objeto. La deteccidon de Ilugares que son invariantes ante
cambios de escala de una de una imagen puede ser realizada buscando
caracteristicas estables a través de todas las posibles escalas, usando una funcién
continua de escalado conocida como espacio de escalas.

La funcion de espacio de escalas es definida como una funcién L(x,y, o), que se
produce de la convolucion de gaussianas de escala variable, G(x,y,a) con una imagen
de entrada I(x, y):

L(x,y,0) = G(x,y,0) *1(x,y) (29)

Donde el x indica operador convolucion en x e y, ademas

o~ (7 +y?) /207
2102 (70)

G(x,y,0) =

Para detectar de forma eficiente puntos caracteristicos estables en el espacio de
escala se ha propuesto la utilizacion de extremos de la funcidon de diferencias
gaussianas convolucionadas con la imagen, D(x,y,0), la cual puede ser calculada a
partir de la diferencia de dos escalas sucesivas separadas por un factor k:

D(x,y,0) = (G(x,y, ko) — G(x,y, a)) *[(x,y) = L(x,y, ko) — L(x,y,0) (71)

Hay un gran ndmero de razones para elegir esta funciéon. En primer lugar es una
funcioén particularmente eficiente de computar, asi como las imagenes suavizadas, L,
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necesarias para la busqueda de caracteristicas en el espacio de escalas y D puede
ser calculada por una simple extraccion de imagenes.

octave) ﬁ ﬁ

Ny
e IO g it
e
Scale T >§9—Z’-—’:"’3:’:‘}:‘:’ ::::
(first g
octave) | e
gl T
S e
SEEe e Difference of
Gaussian Gaussian (DOG)

Figura 73. Extraccién de caracteristicas en cada octava. Adaptada de David G. Lowe [13].

Ademas, la diferencia de gaussianas provee de una aproximacion cercana a la funcién
normalizada en escala Laplaciana de Gaussiana, ¢2V?G, como fue estudiado opr
Linderberg (1994). Linderberg mostré que la normalizacién de la Laplaciana con el
factor 2 es necesaria para una verdadera invarianza en escala. En comparaciones
detalladas experimentales, Mikolajczyk (2002) encontré que el maximo y el minimo de
02V?G produce la mayor cantidad de caracteristicas estables coomparandolo con una
gran cantidad de otras posibles funciones aplicadas a imagenes como el gradiente,

Hessiana, o funcién de esquinas de Harris.

La relacion entre D y 02V2G puede ser facilmente entendida gracias a la ecuacion de
difucion del calor siendo t = 2.

&b _ v
i Y (72)

Por ello, se puede ver que V2G puede ser computado mediante diferencias finitas
aproximando dG /do, usando la diferencia de escalas cercanas en un factor ko y o:
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dG , . G,y ko)—G(xy,0)
—=0VG =
do ko —o (73)

Y por ello,

G(x,y, ko) — G(x,y,0) = (k — 1)a?V*G (30)

Esto muestra que cuando la diferencia de funciones gaussianas se aplica a diferentes
escalas mediante un factor constante ya se incorpora el factor 62 de normalizacion de
escala requerido por el laplaciano invariante ante escalas.

/"fff//;//

e

Figura 74. Puntos vecinos a un punto caracteristico. Adaptada de David G. Lowe [13].
5.4.1.1. Deteccién de extremos locales

Para la deteccion de los maximos y minimos locales de D(x,y,o0), cada punto de
muestra es comparado con sus ocho vecinos de la imagen y nueve vecinos en las
escalas superior e inferior. Es seleccionado solo sin es mayor que todos ellos 0 menor.
El coste de la comprobacion es razonablemente bajo comparado con el hecho de que
la mayoria de los puntos de muestra seran eliminados en las primeras
comprobaciones.

Una tarea importante es determinar la frecuencia de muestreo de la imagen y los
dominios de escala que se necesitan para realizar la deteccién de extremos.
Desafortunadamente, esto muestra que no hay un espaciado minimo entre muestras
para detectar todos los extremos ya que estos pueden estar arbitrariamente cerca. Por
ello se debe elegir una solucion que sea un compromiso entre eficiencia con
completitud. De hecho, como se ha comprobado experimentalmente los extremos que
estan muy cercanos entre si son muy inestables ante pequefas perturbaciones de la
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imagen. Se pueden determinar las mejores aproximaciones experimentalmente
estudiando un rango de frecuencias de muestreo y usando aquellas que proporcionan
los resultados mas satisfactorios [13].

5.4.1.2. Frecuencia de muestreo en la escala

La determinacion experimental de la frecuencia de muestreo que maximiza la
estabilidad se muestra en las figuras que siguen a continuacion.

10 3500
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~ m 2000
50 &
B 2500
50 o
[=
g 2000
=
@
40 -
b
S 1500
a
Matching location and scale + -‘E
20 learest deseriptor in database — S 1000 Total number of keypoints — + _|
= - MNearest descripior in database
500 |
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Figura 75. Determinacion experimental de la frecuencia de muestreo en la escala. Adaptada de
David G. Lowe [13].
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Figura 76. Repetitibilidad segun la cantidad de suavizado a priori. Adaptada de David G. Lowe
[13].
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La Figura 76 muestra los resultados para una simulacion usada para examinar el
efecto de la variacién del numero de escalas por octava en la que la funcién de la
imagen es muestreada para la deteccion de extremos. En este caso, cada imagen fue
remuestreadas seguida de una rotacién de un angulo aleatorio y escalada por una
cantidad aleatoria entre 0.2 y 0.9 veces el tamafo original. Los puntos caracteristicos
de la resolucion reducida fueron buscados en la imagen original de tal forma que todas
las escalas de los puntos caracteristicos estuvieran presentes en la imagen analizada.
Ademas fue afadido un 1% de ruido a la imagen. La linea superior del primer grafico
muestra el porcentaje de puntos caracteristicos que son detectados en un lugar y
escala determinados en la imagen transformada. Para todos los ejemplos de este

capitulo se definira una escala de busqueda con un factor de V2 respecto de la escala
correcta y un lugar de busqueda dentro de o pixeles, donde ¢ es la escala de cada
keypoint. La linea inferior en ese grafico muestra el nimero de puntos caracteristicos
que han sido marcados correctamente dentro de una base de datos de 40.000 puntos
caracteristicos usando el procedimiento de marcado de vecinos mas cercanos. Como
este grafico muestra, la mayor repetitividad se obtiene cuando se muestre a 3 escalas
por octava.

Puede parecer sorprendente que la repetitividad no continua mejorando al aumentar el
numero de escalas muestreadas. La razén para ello es que son detectados muchos
mas extremos locales pero estos extremos son de media menos estables y por ello
menos probables de ser detectados en la imagen transformada. Esto se muestra en el
segundo grafico que muestra el término medio de puntos caracteristicos
correctamente detectados para cada imagen. El numero de puntos caracteristicos
crece cuando crece el numero de escalas muestreadas y el numero total de
coincidencias correctas también crece. Se ha determinado que el numero optimo de
de escalas por octava que optimiza los resultados en base al coste computacional y
eficiencia son 3 escalas por octava.

5.4.1.3. Frecuencia de muestreo en el dominio espacial

Asi como se ha determinado la frecuencia de muestreo por octava del espacio de
escalas se debe determinar la frecuencia de muestreo de la imagen relativa al
suavizado de la misma.

Sabiendo que los extremos pueden presentarse arbitrariamente juntos debe existir un
compromiso similar entre frecuencia y tasa de deteccion. La figura Figura 76 muestra
la determinacion experimental de la cantidad de suavizado a priori, o, que se aplica a
cada nivel de imagen antes de construir el espacio de escalas representativo de cada
octava. De nuevo, la linea superior es la repetitividad de la deteccion de cada punto

UPM Enrique del Sol Acero 126



caracteristico, y los resultados muestran que la repetitividad continua incrementandose
con 0. Sin embargo, hay un coste de usar una gran o en términos de eficiencia, por
eso se ha tomado habitualmente el valor de 0=1.6, el cual produce una repetitividad
optima.

Efectivamente, si se pre-suaviza la imagen se estan eliminando las altas frecuencias
espaciales. Por ello, para hacer un uso total de la imagen esta puede ser expandida
para crear mas puntos de muestreo que los presentados de forma original.
Habitualmente se doblara el tamano de la imagen de entrada usando interpolaciéon
lineal para construir el primer nivel de la piramide. Se asumira que la imagen original
tiene un nivel de suavizado previo de 0=0.5, y por ello la imagen doblada tendra o=1
relativo al nuevo espaciado de pixeles. Esto significa que un nivel adicional de
suavizado es necesario a priori para crear la primera octava del espacio de escalas. El
doblado de la imagen incrementa el numero de puntos caracteristicos estables por un
factor de 4, pero no se han encontrado mejoras mayores aumentando la expansion.

5.4.2. Localizacion precisa de puntos caracteristicos

Una vez que un punto caracteristico candidato es encontrado comparando un pixel
con sus vecinos, el siguiente paso es realizar una busqueda detallada de los datos
cercanos sobre el emplazamiento, escala y radio de las curvaturas principales. Esta
informacién permite rechazar puntos de bajo contraste o que estén situados de forma
pobre a lo largo de los bordes.

La implementacion inicial de esta aproximacion (Lowe, 1999) simplemente localiza
puntos caracteristicos en el lugar y escala de un punto central. Sin embargo,
recientemente Brown ha desarrollado un método usando la expansién de Taylor de la
funcién de espacio de escala, D(x,y,d), centrada de tal forma que el origen sea cada
punto de muestreo:

DT 1 TaZD

d
D(X)—D+WX+§X Wx (75)

Donde D y sus derivadas son evaluadas en el punto de muestreo y x = (x,y,0)" es el

offset desde dicho punto. La localizacion del extremo, %, se determina tomando la
derivada de esa funcion con respecto a x e igualandola a cero, dando

9°D~t oD
0x% Ox (76)

£=-
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Figura 77. Estas figuras representan las etapas en la deteccion de puntos caracteristicos. La
imagen superior izquierda de 233x189 pixeles es la imagen original. La imagen superior
derecha representa la localizacion de 812 puntos caracteristicos de los maximos y minimos de
la diferencia de funciones gaussianas. Los puntos caracteristicos se muestran como vectores
indicando escala, orientacion y emplazamiento. La imagen inferior izquierda muestra el proceso
después de aplicar un umbral de contraste minimo permaneciendo 729 puntos caracteristicos.
Finalmente tras aplicar un umbral de radio de curvatura quedan 536 puntos caracteristicos.
Adaptada de David G. Lowe [13].

La funcién de valor de los extremos, D(X), es muy util para rechazar los extremos
inestables con bajo contraste. Puede obtenerse de las anteriores ecuaciones, dando:

D(A)—D+16DTA
=ET % (77)

Habitualmente los extremos con un valor absoluto |D(x)|] menor de 0.03 son
descartados (asumiendo que los valores de los pixeles en la imagen estan en el rango

[0, 1]).
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5.4.2.1. Eliminacion de los resultados de borde

Para estabilidad no es suficiente con rechazar puntos caracteristicos de bajo
contraste. La diferencia de gaussianas produce una fuerte respuesta a lo largo de los
bordes incluso si el emplazamiento a lo largo del borde estd mal determinado y por
tanto es inestable ante pequenas cantidades de ruido.

Un pico pobremente definido en la diferencia de gaussianas tendra una gran curvatura
principal a lo largo del borde pero una pequena en direccion perpendicular. La
curvatura principal puede ser calculada como una matriz Hessiana H de dimensiones
2x2, calculada en el emplazamiento y escala del punto caracteristico:

(78)

Las derivadas se estiman tomando diferencias entre los vecinos de los puntos de
muestreo.

Los autovalores de H son proporcionales a las principales curvaturas de D. Se puede
evitar calcular explicitamente los autovalores ya que solo interesa el céalculo de su
cociente. Si se toma como a el autovalor mayor y 8 el autovalor menor. Entonces, si la
suma de los autovalores es la traza de H y el producto es el determinante:

Det(H) = Dy,Dyy — (Dyy)? = ap. (31)

En el caso improbable de que el determinante sea negativo, las curvaturas tendran
diferentes signos por ello el punto sera descartado como extremo. Si se toma r como
el cociente entre el autovalor mayor y el menor, de forma que a = rf, entonces:

Tr(H)? (a+p)? (B+p)?  (r+1)?
Det(H)  af 182 = r (80)

Lo cual depende solo del cociente entre los autovalores en lugar de sus valores

T . r+ 1)2 . .
individuales. La cantidad r+D /r es minima cuando los dos autovalores son iguales
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y se incrementa con r. Por ello para comprobar que el radio de las curvaturas
principales es inferior a un determinado umbral, r, solo se necesita comprobar:

Tr(H)? (r+1)?
Det(H) = 1 (81)

Estos calculos son muy eficientes de realizar. Lo habitual es tomar r = 10, lo que
elimina los puntos caracteristicos que tienen un cociente entre las curvaturas
principales mayor de 10.

5.4.3. Asignacion de orientacion

Asignando una orientacién consistente a cada punto caracteristico basada en las
propiedades locales de la imagen se puede crear un buen descriptor de puntos
caracteristicos que represente la orientacion relativa y produzca con ello una
invarianza frente a la rotacién de la imagen.

La escala de cada punto caracteristico es usada para seleccionar la imagen suavizada
de forma gaussiana mas cercana en escala para que todos los calculos se puedan
realizar de forma invariante en escala. Para cada imagen de muestra, L(x,y), a esa
escala, la magnitud del gradiente m(x,y), y orientaciéon, 6(x,y), es precalculada
usando diferencias de pixeles:

m(x:Y) = \/(L(X + 1'}’) - L(X - 1;}’))2 + (L(ny + 1) - L(ny - 1))2 (82)

L(x,y+1)—L(x,y — 1))

R
0(x, y) = tan (L(x T Ly) — L(x — Ly) (83)

Se crea de esta forma un histograma de orientacién de las orientaciones del gradiente
de los puntos de muestra de la regién de alrededor del punto caracteristico. El
histograma de orientacién tiene 36 casillas cubriendo los 360 grados de todas las
posibles orientaciones. Cada muestra afiadida al histograma es pesado por la
magnitud de su gradiente y mediante una ventana de pesos circular-gaussiana con un
o que es 1.5 veces la escala de cada punto caracteristico.

Los picos en el histograma de orientacién corresponden a direcciones dominantes de
los gradientes locales. Se detecta con ello el maximo pico del histograma y junto con
cualquier otro pico que este dentro del 80% del mayor se usa para crear la orientacion
del punto caracteristico. Por ello, para emplazamientos como multiples picos de
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magnitud similar habra multiples puntos caracteristicos creados en el mismo lugar y
escala pero con diferentes orientaciones. Solo el 15% de los puntos caracteristicos
son asignados con multiples orientaciones, pero esto contribuye de forma significativa
a la estabilidad de la comparacion. Finalmente una parabola es encajada entre los 3
valores del histograma mas cercanos a cada pico para interpolar la posicion del pico
con mayor exactitud.

5.4.4. El descriptor local de la imagen

Las operaciones previas han asignado un emplazamiento a la imagen, escala,
orientacion a cada punto caracteristico. Estos parametros imponen un sistema de
coordenadas local 2D repetible en el que describir la regién local de la imagen y
proporcionar con ello la invarianza ante esos parametros. El siguiente paso es
computar un descriptor para la imagen local que sea altamente descriptivo asi como
invariante ante posibles variaciones, como cambios en la iluminacién o en el punto de
vista.

Una aproximacion obvia seria muestrear las intensidades locales de la imagen
alrededor del punto caracteristico a la escala adecuada y marcarlas usando una
medida de correlacion normalizada. Sin embargo, la simple correlacién de muestras de
imagenes es muy sensible a cambios causando perdida de muestras. Una técnica
mejor ha sido desarrollada basandose en la vision biolégica, particularmente en las
complejas neuronas del cortex visual primario.

17'_5'.;_;‘3

L
;

Image gradients Keypoint descriptor

Figura 78. Representacion del descriptor de puntos caracteristicos. Adaptada de David G.
Lowe [13].

Un descriptor de puntos caracteristicos se crea primero calculando las magnitudes del
gradiente y orientaciones de cada punto de prueba de la imagen en una region
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alrededor del emplazamiento del punto caracteristico como se muestra en la imagen
izquierda. Son pesados mediante una ventana gaussiana indicada por el circulo. Estas
muestras son acumuladas en un histograma sumando los contenidos de cada
subregién 4x4, tal y como se muestra en la imagen derecha, con la longitud de cada
flecha correspondiente a la suma de las magnitudes del gradiente para direcciones
cercanas dentro de la region.

5.4.4.1. Representacion del descriptor

Las figuras anteriores muestran el calculo del descriptor de puntos caracteristicos.
Primero la magnitud y orientacion del gradiente de la imagen son muestreadas en
torno al emplazamiento del punto caracteristico usando la escala del punto
caracteristico para seleccionar el nivel de suavizado gaussiano de la imagen. Para
conseguir invarianza en la orientacion, las coordenadas del descriptor y orientaciones
del gradiente son rotadas relativamente a la orientacién del punto caracteristico. Para
mayor eficiencia los gradientes son precomputados para todos los niveles de la
piramide descrita en la seccién anterior. Este queda ilustrado con pequenas flechas en
cada punto de muestreo de la zona izquierda de la figura.

Una funcién de pesos gaussiana con ¢ igual a 1.5 veces la dimension de la ventana
del descriptor es usada para asignar un peso a la magnitud de cada punto de
muestreo. Esto queda ilustrado con el circulo sobre la figura. El propésito de esta
ventana gaussiana es evitar cambios subitos en el descriptor con pequefios cambios
en la posicion de la ventana y dar menor énfasis a los gradientes que estan lejos del
centro del descriptor ya que estan mas afectados por errores de pérdida de
informacién.

El descriptor de puntos caracteristicos es mostrado en la parte derecha de la figura ¢?.
Permite crear histogramas de 4x4 regiones de muestreo para cambios en las
posiciones del gradiente. La figura muestra ocho direcciones para cada histograma de
orientacion, con la longitud de cada flecha correspondiente a la magnitud de dicha
entrada del histograma. Una muestra del gradiente en la izquierda puede convertirse
en 4 posiciones de muestreo mientras se sigue contribuyendo de la misma manera al
histograma en la derecha, asi se consigue el objetivo de permitir movimientos para
mayor numero de posiciones locales.

Es importante evitar todos los efectos de borde en los que el descriptor cambia
subitamente cuando se cambia el suavizado de una muestra para pasar de pertenecer
de un histograma a otro o de una orientacion a otra. Por ello, se usa la interpolacion
trilinear para distribuir el valor de cada muestra de gradiente en celdillas adyacentes
en el histograma. En otras palabras, cada entrada en una celdilla es multiplicada por
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un peso de 1 — d por cada dimension, donde d es la distancia de la muestra dese el
valor central de la celdilla medido en unidades de espaciado del histograma.

El descriptor se forma a partir de un vector que contiene los valores de todas las
entradas de orientacion del histograma, correspondiente a las longitudes de las flechas
en la Figura 78. La figura muestra una matriz de histogramas de orientacion 2x2. Los
experimentos han demostrado que los mejores resultados se consiguen utilizando
matrices de histogramas de orientacion 4x4 con 8 celdillas de orientacion en cada uno.

Finalmente, el vector de caracteristicas es modificado para reducir los efectos de
cambios en la iluminacion.

5.4.4.2. Testeo del descriptor

Existen dos parametros que pueden ser usados para variar la complejidad del
descriptor: el numero de orientaciones, r, en los histogramas, y las dimensiones, n, de
la matriz nxn de los histogramas de orientacién. El tamano del descriptor resultante es
rn?. Cuando la complejidad del descriptor crece se puede discriminar mejor en una
gran base de datos, pero también se vuelve mas sensible a distorsiones de forma u
oclusion.
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Figura 79. Porcentaje de puntos caracteristicos encajados correctamente segun varia el
tamafo del descriptor y el numero de orientaciones. Adaptada de David G. Lowe [13].

La Figura 79 muestra resultados experimentales en los que el numero de
orientaciones y el tamafo del descriptor varian. El grafico fue generado para un punto
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de vista transformado en el cual una superficie plana es girada 50° alejandose del
punto de vista frontal y anadiendo un 4% de ruido a la imagen. Esto se encuentra
cerca de los limites de la busqueda eficiente, y es precisamente en estos casos
dificiles donde se requiere alta eficiencia en el descriptor. Los resultados muestran el
porcentaje de puntos caracteristicos que se encajan correctamente con el vecino mas
cercano entre una base de datos de 40.000 puntos caracteristicos. El grafico muestra
que histogramas con una unica orientacion (n=1) son muy poco discriminantes, pero
los resultados continian mejorando hasta tener una matriz de 4x4 de histogramas de
orientacion con 8 orientaciones. Después de esto, afiadir mas orientaciones o un
descriptor mayor pueden incluso empeorar los resultados haciéndolos mas sensibles a
distorsiones.

Busqueda de correspondencias en grandes bases de datos

Una caracteristica importante para la medida de la diferenciacién de caracteristicas es
como varia la eficiencia de la busqueda en funcién del numero de elementos en la
base de datos que son comparados.

100
a0
3
'ﬁ 40 Matching 'ocafion, scale, and orientation ——
2 Wearest descriptor in database
wd
20
|:| L L PR T M
1000 10000 100000

Mumber of keyooints in database (log scale)

Figura 80. Eficiencia segun el numero de puntos caracteristicos almacenados en la base de
datos. Adaptada de David G. Lowe [13].

La Figura 80 muestra como la eficiencia varia en funcion del tamafo de la base de
datos. La linea discontinua inferior muestra la porciéon de caracteristicas de la imagen
para las cuales el vecino mas cercano de la base de datos fue marcado
correctamente, mostrando el tamano de la base de datos de forma logaritmica. El
punto mas a la izquierda esta marcado Unicamente frente a una Unica imagen,
mientras que el punto del lado derecho esta marcado contra una base de datos de
todas las caracteristicas de 112 imagenes. Se puede apreciar como la eficiencia del
marcado no decrece en funcién del numero de elementos de distraccion, por lo que
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todo indica que el éxito de las operaciones surge aunque se aumente mucho el
tamano de la base de datos.

La linea continua muestra el porcentaje de puntos caracteristicos que han sido
identificados correctamente en la imagen transformada. La razén de que esta linea
sea horizontal es que el test fue ejecutado sobre una base de datos repleta para cada
valor, mientras que solo se variaba la porciéon de datos usada para los elementos
distractores. Es de interés que el hueco entre las dos lineas sea pequefio, indicando
que todos los fallos del emparejamiento se deben mas a problemas con la funcién de
localizacion inicial y asignacion de orientacién que problemas de diferenciacion,
incluso con tamafos muy grandes de bases de datos.

5.5. PRUEBAS REALIZADAS CON SLAM VISUAL A TRAVES DEL
METODO SIFT

El método SIFT es un método de reconocimiento de caracteristicas de una imagen
invariantes frente a cambios en la escala, rotaciones y parcialmente invariantes ante
cambios en la iluminacién y en el punto de vista tridimensional. Este algoritmo se
puede aplicar para el reconocimiento de objetos dentro de una escena o a la
localizacion de un determinado objeto dentro de otra imagen, o a una multitud de
aplicaciones de la vision por computador.

Sin embargo, la aplicacion a la localizacion de un robot del método SIFT es
aparentemente mas sencilla que la funcionalidad original puesto que los datos que se
tienen de partida son dos mapas donde los cambios que se producen de una imagen
respecto a la original son aparentemente menos significativos que en la aplicacion
para reconocimiento de imagenes.

La idea principal reside en la comparacion de dos mapas mediante el algoritmo visual
SIFT. Los dos mapas que se van a comparar extrayendo sus caracteristicas seran el
mapa global de baja resoluciéon (LRM) y el mapa local que se reconstruira tomando
como referencia el propio robot (Mapa local auxiliar). Al igual que en las técnicas de
localizacion por métodos de comparacion numéricos que se han comentado en
apartados anteriores se necesita la representacion local del robot como punto de
partida para la busqueda. Esta vez no es necesario ni conveniente realizar la
reconstruccién respecto al punto caracteristico de la celda donde el robot cree estar
como se realizé en el caso anterior.
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Figura 81. Esquema del offset utilizado en los célculos de localizacion
por comparacion analitica de mapas

En este caso, no se van a superponer dos matrices para realizar la comparacion, sino
que se utilizaran otros tipos de algoritmos para identificar la posicion del robot relativa
a los puntos caracteristicos encontrados en ambos mapas y asi localizar el robot.

La idea basica para aplicar el método SIFT a la localizacién del robot se basa en
encontrar una serie de puntos de la representacion local en el interior del mapa global.
Conseguido esto es sencillo posicionar al robot, puesto que al saber las distancias
relativas del robot a un punto de su mapa local podria calcular su posicion en el mapa
global mediante la aplicacién de la escala correspondiente y la equivalente distancia
sobre el mapa global. Por ejemplo:

Figura 82. Ejemplo de posicionamiento conocida la distancia y el angulo a un punto
caracteristico
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Si se logra encontrar la correspondencia entre dos puntos caracteristicos de ambos
mapas mediante el método SIFT, conociendo la posicion relativa del punto
caracteristico local respecto del robot es seran conocidos por tanto la distancia y el
angulo de dicho punto al robot. Conociendo la posicion del mismo punto en el mapa
global, basta realizar una transformacioén lineal mediante el cociente de escalas para
hallar la posicion actual del robot en el interior del mapa global.

Para mayor precisién se puede repetir el calculo con todos los puntos caracteristicos
equivalentes encontrados y hallar el punto medio de todas las posiciones del robot
obtenidas y tomar la media como posicion estimada de salida del bloque de SLAM
visual.

5.5.1. Aplicacion del método SIFT a las estructuras de mapas

El método SIFT es un método de reconocimiento de caracteristicas de imagenes, por
tanto necesita una imagen como entrada. Una imagen es fundamentalmente una
matriz de tres capas donde cada elemento corresponde a un pixel y cada capa lleva
asociado un valor de intensidad de cada color, para los colores rojo, verde y azul
(RGB).

Las matrices con las que se trabaja en el mapeado del robot llevan informacion sobre
el terreno en forma de valores numéricos reales. Lo mas légico parece ser trabajar con
las capas de alturas o gradientes porque representan una informacion que es
facilmente comparable con el mapa recibido como entrada a priori para el
funcionamiento del robot. No tendria mucho sentido trabajar con la imagen de la sefal
GPS si puede cambiar con el tiempo con cierta frecuencia, o no es conocida hasta que
el robot llega a un determinado punto. Tampoco parece légico trabajar con la capa de
confianza puesto que es el robot quien rellena esa capa en funcién de la forma en la
que impacta el laser sobre el terreno. Por lo tanto interesa trabajar con informacion
que se pueda obtener a priori con cierta precisién como la capa de alturas.

Como requisito de entrada para el algoritmo SIFT se requiere que la imagen sea una
imagen en escala de grises normalizada, por lo tanto los valores de cada pixel tienen
que ser numeros positivos en el intervalo [0, 1]. Es facil normalizar los valores de la
capa de alturas para que cumplan esos requisitos mediante las siguientes
operaciones:

Imagen = Imagen — min (Imagen) (84)
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Imagen

I =<9 __
magen max(Imagen)

(85)

Tras estas operaciones la matriz queda normalizada y se ajusta perfectamente a las
condiciones de entrada.

Hay que tener en cuenta que los mapas con los que se trabaja habitualmente en las
simulaciones tienen unas dimensiones tipicas del orden de 100x100 hasta 500x500,
con lo que tomados como imagenes representan un tamafno que es relativamente
pequefio para las imagenes habituales que se utilizan hoy en dia. Por ese motivo esto
va a producir que el algoritmo se ejecute de forma mas rapida que la disefiada para el
uso original. Esto es un punto a favor, pero hay otro muy importante en contra
relacionado con el pequeno tamafo y detalle de la imagen que sera discutido mas
adelante.

Al igual que ocurria con el algoritmo de celdas, realizado por medio de métricas y
busqueda del minimo desarrollado en el apartado anterior, donde se reducia el ambito
de busqueda del mapa, aqui ocurre lo mismo. Se debe reducir el area de busqueda en
el interior del LRM a un cuadrado donde la probabilidad de que se encuentre el robot
sea muy elevada acotando las dimensiones con el error maximo esperable por parte
de la fusién de la odometria con los sensores inerciales. Se habian utilizado unos
valores de + 7 metros en el apartado anterior en cuanto al error maximo admisible, por
lo que el cuadrado a utilizar tiene 14 m de lado. Se utilizardn aqui otras dimensiones
superiores por lo que el mapa local a buscar dentro del LRM podria tener la siguiente
forma:
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Figura 83. Reconstruccion de un mapa local utilizando una unica medida del laser

Mientras que el LRM donde se va a realizar la busqueda posee la siguiente estructura:

Figura 84. LRM con indicacion de la zona reconstruida de forma local
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En este caso, el robot se encuentra situado donde indica la punta de flecha por lo que
la reconstruccion parcial realizada con una Unica medida del laser corresponde a esa
area.

Debido a que el reconocimiento de imagenes debe funcionar en un area mayor que las
técnicas de comparacion con métricas se debe establecer un area de busqueda mayor
para que la imagen tenga suficiente informacion para la busqueda de puntos
caracteristicos. Se puede establecer por ejemplo un area de 200x200 metros de
busqueda, quedando ambos mapas de la forma que se muestra a continuacion:

Matching by origmial SIFT

Figura 85. Eliminacion del area de la imagen que se escapa del error maximo admisible por el
sistema de posicionamiento odometria-ins

Se aprecia como la imagen de la izquierda corresponde al mapa de baja resolucion
global donde se han eliminado las zonas alejadas de la posicion del robot una
distancia mayor de un cuadrado de 200 m de lado. Esto se hace para que habiendo
suficiente informacién en la imagen no se interfiera en la busqueda de puntos
caracteristicos con zonas de la imagen donde es imposible que el robot este
emplazado.

5.5.2. Configuracion de los parametros del método SIFT

Para los ensayos realizados se ha utilizado una implementacion del descriptor SIFT
realizada por Andrea Vedaldi para la Universidad de California en Los Angeles cuyo
uso es libre con fines educacionales y de investigacion [14].

La implementacion esta disefiada para producir resultados compatibles con la version
de Lowe y esta disefiada para el entorno de Matlab. Dicha implementacién se divide
en dos partes diferenciadas, SIFT detector y SIFT descriptor. El primero de ellos
extrae de la imagen una coleccién de de puntos caracteristicos y el segundo se
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encarga de hacer una descripcion extensa del entorno de cada punto caracteristico,
consiguiendo mediante canonizacién que el descriptor sea invariante frente a
traslaciones, rotaciones y escalado y siendo robusto frente a pequenas distorsiones.

El software devuelve una matriz 4 x K conteniendo la referencia a cada punto y una
matriz 128 x K conteniendo los descriptores para cada uno. Cada referencia esta
caracterizada por 4 numeros que estan ordenados de la siguiente forma: (x1, x2) son
los dos primeros valores que corresponden a las coordenadas del punto caracteristico
respecto a la esquina superior izquierda de la imagen, o es la escala a la que ha sido
hallado éste y por ultimo 6 que es su orientacién. La esquina superior izquierda toma
los valores (0, 0) y las coordenadas (x1, x2) pueden ser fraccionarias lo que dota al
sistema de precision sub-pixel. La escala o es el nivel de suavizado en el que la
caracteristica ha sido encontrada. Este valor puede ser interpretado como el tamafio
del entorno del punto caracteristico, el cual es visualizado como un disco de tamafio
60. Cada descriptor es un vector que describe toscamente la apariencia del trozo de
imagen correspondiente al entorno de cada punto. Tipicamente este vector tiene una
dimension de 128, pero este valor puede ser cambiado.

Las posibilidades de configuracién del software son multiples, pero los valores por
defecto han sido elegidos para emular la implementacion original de Lowe.

El detector y descriptor SIFT han sido construidos a partir de la funcién espacio de
escalas gaussiana de la imagen I(x). La funcidon de espacio de escala gaussiana
G(x,0) que ha sido ampliamente descrita en apartados anteriores representa la misma
informacién que I(x) pero a distintos niveles de escala muestreada de una forma
particular para reducir la redundancia. EI dominio de la variable o es discretizado de
forma logaritmica en O octavas. Cada octava es dividida posteriormente en S
subniveles. La distincion entre octava y subnivel es importante puesto que a cada
octava consecutiva los datos son espacialmente muestreados a la mitad. Las octavas
y los subniveles son identificados por un indice de octava discreto y un subnivel s
respectivamente. Las octavas o y los subniveles se rigen por la siguiente expresion:

0(0,5) = 0,2°%/S, 0 € opin +10,..,0—1], s€]0,...,5—1]

Donde g, es la base del nivel de escalas. El software empleado admite los siguientes
parametros para las operaciones iniciales:

¢ Numero de octavas: O.

e Primera octava: indice de la primera octava o,,;,. Usualmente se toma como 0
o -1. Tomando o,,;, como -1 se consigue el efecto de doblar el tamafio de la
imagen antes de computar la funcién de espacio de escala gaussiana.
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Numero de subniveles: S
Suavizado base: g,

Suavizado a priori nominal: a,,. El algoritmo asume que la imagen de entrada
esta previamente convolucionada (go, * I)(x) en oposiciéon a I(x) y se ajustan
los calculos de forma adecuada. Usualmente se asume que g,, = 0.5 pixeles.

Otros parametros importantes del detector son:

Threshold: el umbral para los extremos encontrados. Extremos locales cuyo
valor sea inferior a |G (x, 0)| son rechazados.

Edge Threshold: el umbral de borde. Si el extremo local esta en un valle el
algoritmo lo descarta por ser muy inestable. Los extremos estan asociados con
un valor proporcional a su nitidez y son rechazados si esa nitidez es inferior al
umbral.

Parametros de configuracion del descriptor:

Magnificacién: el factor de magnificacion m esta relacionado con el tamafio de
cada celda espacial. Cada spatial bin del histograma tiene un tamafo ma,
donde o es la escala del punto caracteristico.

Numero de celdas espaciales: este numero define la extension y la dimensién
del descriptor. La dimension es igual a NumSpatialBins? * NumOrientedBins y
su extension tiene un radio NumSpatialBins * mo /2

Numero de celdas de orientacién

Los valores para los parametros que se han usado inicialmente son los
originalmente propuestos por Lowe:

UPM

$=3
Omin = —1

o, = 1.6 % 21/5
o, = 0.5

0 = floor(log, min (M,N)) — o,pin — 3
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e Treshold =0.04/(2%*S)

e FEdgeTreshold = 10

e Numero de celdas espaciales = 4

e Numero de celdas de orientaciéon = 8

e Magnificacion = 3

5.5.3. Ensayos realizados con imagenes

Ensayo n°l

Con los parametros recomendados por Lowe se obtienen demasiados puntos
caracteristicos como para poder ilustrar graficamente los resultados, pero simplemente
cambiando el niumero de celdas espaciales y de orientacién, situandolos ambos a 16
celdas se obtiene un resultado muy bueno para dos imagenes de muestra.

Figura 86. Busqueda de equivalentes en imagenes con los datos del ensayo n° 1

Se puede observar como el sistema es capaz de detectar la imagen de la izquierda en
la imagen de la derecha, estando ambas a distinta escala. Ademas estando la imagen
derecha incluida en un fondo con otro contenido independiente del logotipo que se
intenta reconocer. Es evidente que los resultados son muy buenos con este tipo de
imagenes aunque no es un método infalible y se producen correspondencias falsas
que deberian ser eliminadas por algun otro método.
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Si se modifican los parametros de tal forma que se haga mas precisa la busqueda de
puntos caracteristicos sacrificando con ello el numero de concordancias encontradas
pero mejorando la exactitud de la busqueda se obtiene el siguiente resultado:

Figura 87. Busqueda de equivalentes en imagenes utilizando pardmetros mas restrictivos

Siendo los parametros modificados los siguientes:
e S=5
e Numero de celdas espaciales=20
e Numero de celdas de orientacion=20
¢ Magnificacion=5

Los resultados son muy buenos tras estas modificaciones pudiendo afirmar que el
método es muy adecuado para este tipo de imagenes.

Los problemas que se han encontrado estan relacionados fundamentalmente con la
variacion de los parametros originales. Dependiendo de la complejidad vy
caracteristicas de la imagen a analizar es conveniente modificar los parametros
originales de forma manual para aumentar la exactitud de los resultados. Aun no se ha
dado con una forma automatica de modificacién de dichos parametros, por lo que los
ensayos basados en pruebas son actualmente las Unicas alternativas razonables. Por
ello surge la dificultad de implementacién de este método para cualquier tipo de
imagenes.
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Ensayo n®2

En este caso, situando los parametros de la misma forma que en el ensayo n°1, es
decir:

e S=5

e Numero de celdas espaciales=20

e Numero de celdas de orientacion=20
e Magnificacion=5

Se obtiene el siguiente resultado:

Figura 88. Busqueda de equivalentes en imagenes utilizando una imagen girada y con areas
eliminadas segun la configuracion de parametros restrictiva

Como se puede apreciar los resultados son increiblemente buenos y el algoritmo es
capaz de distinguir puntos equivalentes aun cuando se produce una rotacion de la
imagen y una distorsion de ciertas zonas de la misma. Se han utilizado estos
parametros para la mejor representacién grafica de los resultados, porque empleando
la configuracién inicial dada por Lowe, los resultados son mas dificiles de verificar:
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Figura 89. Busqueda de equivalentes en imagenes utilizando una imagen girada y con areas
eliminadas utilizando los parametros originales de Lowe

En este ultimo caso se aprecia que se sefialan como puntos caracteristicos validos en
la imagen derecha zonas de las dos lineas en blanco que no tienen correspondencia
real con la imagen izquierda, por lo tanto el algoritmo falla en algunos puntos.
Haciendo menos exigente los criterios de comparacion del descriptor se producen
casos de identificacion falsos de puntos caracteristicos. Pero con la configuracion
expuesta anteriormente no se tenian estos problemas.

En cualquier caso se puede concluir que ensayando la configuracion adecuada de
parametros se puede conseguir que el reconocimiento de ciertos puntos
caracteristicos en una imagen sea practicamente infalible.

Ensayo n°3

Utilizando la misma imagen que en el ensayo anterior se aflade una proporcion de
75% de ruido de distribucion uniforme sobre la imagen original izquierda. La adiccion
de ruido se realiza mediante un conocido programa de retoque fotografico. Se sitlian
los parametros segun la configuracion mas exigente, es decir, de nuevo:

e S=5

e Numero de celdas espaciales=20

e Numero de celdas de orientacion=20
e Magnificacion=5

Mientras que todos los demas permanecen idénticos a los recomendados por Lowe.
Observando los resultados se aprecia que la cuantia de puntos caracteristicos se
reduce en gran medida sin embargo la precision sigue siendo buena.
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Figura 90. Busqueda de equivalentes en imagenes utilizando en a imagen izquierda un 75%
de ruido uniforme. Imagen izquierda rotada y con areas eliminadas.

Los puntos caracteristicos seleccionados en la imagen izquierda corresponden
fielmente a los seleccionados en la imagen derecha, el algoritmo vuelve a dar buenos
resultados con este tipo de imagenes aun empeorando en gran medida las
condiciones de reconocimiento.

5.5.4. Ensayos realizados con mapas en condiciones operativas

Debido a los buenos resultados cosechados con imagenes cualesquiera obtenidas de
la web era esperable que se mantuvieran los resultados con imagenes de contenido
mucho mas sencillo como son las matrices usadas para la reconstruccién en el
proceso de mapeado.

En los siguientes ejemplos se van a usar mapas similares a los usados en el apartado
inicial donde se explicaba los principios de aplicacion del método SIFT a las
estructuras de mapas. Utilizando la configuracién dada por Lowe para la comparacion
de la reconstruccidn de un mapa local con el LRM recortado se obtienen el siguiente
resultado:
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Figura 91. Método SIFT aplicado al reconocimiento de la posicion del mapa local en el interior
del LRM

Se puede ver claramente que los resultados son muy malos con este tipo de
configuracién. Mientras que en la imagen izquierda se detectan 2 puntos
caracteristicos, en la imagen derecha unicamente se detecta 1, por lo que se hacen
corresponder ambos al mismo punto, pero ninguno de ellos estad correctamente
marcado.

Ante estos resultados desalentadores se optd por probar las configuraciones que
habian producido éxito en las imagenes anteriores. Los resultados fueron aun mas
negativos pues no solo no se produjo ninguna coincidencia de puntos caracteristicos
sino que no se detectaron puntos caracteristicos en ninguna de las imagenes.

Esto parece logico si se tiene en cuenta que las configuraciones que habian producido
buenos resultados en las anteriores pruebas con imagenes reales eran
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configuraciones consideradas mas restrictivas. Por lo tanto se decidié realizar pruebas
con configuraciones menos restrictivas que la original de Lowe, modificando los
parametros de tal forma que produzcan mas resultados aunque estos sean a priori de
menor precision. Para ello se optd por unos parametros de los siguientes valores:

e S=6

e Numero de celdas espaciales=4

e Numero de celdas de orientacion=4
e Magnificacion=2

Los resultados contindan siendo inaceptables para los mapas, no detectandose nada
mas que un unico punto caracteristico en el mapa local que se hace corresponder a un
gran numero de ellos en el LRM. Aun asi ninguno de los puntos seleccionados de la
primera imagen corresponde realmente al de la imagen derecha. Solo hay uno de ellos
que esta muy proximo, y aun considerandolo como bueno la eficacia del método dista
mucho de la conseguida con imagenes fotograficas reales.

Matching by otiginal SIFT

Figura 92. Método SIFT aplicado al reconocimiento de la posiciéon del mapa local en el interior
del LRM con la configuracién original propuesta por Lowe

Los ensayos de este tipo han sido muy numerosos dando todos ellos un resultado
muy negativo. Aun cuando se producia algun atisbo de correspondencia entre ambos
mapas se encontrd que al variar de mapa local se necesitaba cambiar la configuracion
de los parametros personalizandolo para cada uno.
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5.5.5. Conclusiones sobre el método SIFT aplicado a la
localizacién del robot

La conclusion principal es que no se ha podido llevar a la practica el método SIFT para
la localizacién del robot utilizando la comparacién de una reconstruccién local con el
mapa global en baja resolucion. Con los resultados tan positivos que se obtuvieron en
los ensayos con fotografias reales parece logico pensar que el método SIFT debe
funcionar con imagenes como las de los mapas usados pero la realidad de los
experimentos muestra otra cosa.

Las razones mas probables para el fracaso de la aplicacion de esta técnica parecen
residir en la insuficiente informacién que proporciona la reconstruccion de una Unica
lectura del laser para ser comparada por métodos graficos. Hay que tener en cuenta
que este método estd pensado para la comparacién de imagen con un numero de
pixeles mucho mayor al numero de celdas que resultan con informaciéon tras una
lectura del laser. Por ese motivo se considera que la informacién es demasiado pobre,
ya que no proporciona un contraste suficiente entre las diferentes areas de la zona
reconstruida. Es probable también que la tipologia de los mapas simulados basados
en parabolas dificulte aun mas las tareas de reconocimiento puesto que una parabola
vista en planta no tiene apenas elementos diferenciadores de contorno en su interior
como para que el algoritmo pueda hallar elementos caracteristicos.

Es previsible que para futuros desarrollos basados en el método SIFT para
localizacion al conseguir mejorar el realismo en la simulacién del entorno se consiga
aumentar la concordancia de puntos caracteristicos aumentando con ello las
probabilidades de éxito del método en la localizacién. Ademas seria conveniente un
intento de enriquecer el mapa local reconstruido de tal forma de poder acumular varias
pasadas del laser con el robot estatico de tal forma que se puede utilizar la informacion
fusionada por todas ellas para aumentar la riqueza de la imagen y con ello el nimero
de puntos caracteristicos encontrados.
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6. CONCLUSIONES

En el presente proyecto se han desarrollado algoritmos de reconstruccién preparados
para su uso en un entorno simulado por un robot que posee un laser y GPS como
elemento de localizacion principal. Ademas se han desarrollado herramientas para la
simulacion del entorno y las pruebas del mencionado algoritmo.

A continuacién se describen las principales contribuciones del proyecto:

Algoritmos de reconstruccion

Durante el proyecto se han desarrollado algoritmos de reconstruccion para entornos
exteriores con una calidad de posicionamiento muy elevada ya que se contaba con
GPS. Se ha comprobado el correcto funcionamiento de los mismos para las
condiciones de simulacién y como los algoritmos de fusion de la informacion se
comportan de forma exitosa con el sistema de mapas, asi como el traslado del mapa
local sobre el mapa global y las interacciones entre ellos.

Se han podido estimar los gradientes de un terreno de una forma adecuada para la
planificacién de la ruta por parte del robot, dando un nivel de ocupacién adecuado para
los requisitos del resto del proyecto NM-RS. Ademas se han utilizado unas técnicas
llamadas de “asignacion de libertad” para recabar informacion de los puntos de no
impacto lo que proporciona un aumento de la informacién respecto las técnicas
convencionales donde se desaprovechaban los datos de los mencionados puntos al
no proporcionar informacién certera sobre el terreno y obstaculos.

Se ha desarrollado un método de medicion de la confianza de la informacion aportada
en una celda basado en la dispersién de los puntos sobre la misma lo que introduce
una ventaja sobre algoritmos que solo tienen en cuenta el numero de impactos totales.

El método desarrollado de fusion de la informacion entre las medidas del laser y el
HRM asi como entre este y el LRM ha demostrado ser muy eficaz para la
actualizaciéon de la informacion, con una rapidez de actualizacion aceptable y
parametrizable lo que le dota de gran dinamismo. Ademas la no necesidad de
almacenamiento indefinido de la informacion es un motivo importante para la
implementacién de dicho algoritmo.
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Algoritmos de localizacion

Durante la realizacién de este proyecto se han probado dos métodos para ayudar al
robot en la localizacion cuando se carece de sefial GPS.

El método basado en comparacién de mapas ha resultado ser una ayuda importante a
la localizacién en ausencia de sefial GPS aunque por otro lado es mas impreciso de lo
que se habia esperado inicialmente. No obstante, se produce una mejora significativa
en la comparacion a nivel sub-celda respecto a la solucién aportada en la primera
aproximacién. Se abre de esta forma un campo de trabajo adicional para siguientes
desarrollos basados en la mejora de la localizacion para robots equipados con GPS
cuando se produce la falta del mismo. Se recomienda hacer un énfasis mayor en la
definicion de las métricas para la comparacion de mapas y los requisitos para dicha
comparacion definiendo un nuevo sistema que penalice de forma mas precisa la
comparacion de mapas descentrados.

Por otro lado se ha probado un método aplicado a la visién por computador para la
localizacion de robot en entornos exteriores (SIFT). Este método altamente potente
con imagenes no ha dado un buen resultado para los mapas almacenados por el robot
debido a la insuficiencia de detalle de dichos mapas. Es esperable que para entornos
reales no se produzca tanta insuficiencia y por el contrario se dote de mas realismo a
los mapas de forma que se pueda configurar el sistema para la localizacién de puntos
caracteristicos de forma fiable. Es importante sefalar la potencia de este método y la
necesidad de una mayor investigacién para su aplicacién al posicionamiento de robots.
Es probable que aumentando la informacidén contenida en el mapa local realizado en
una pasada del laser mediante la fusion de 2 o mas pasadas con el robot estatico se
mejoren los resultados del algoritmo de localizacion visual.
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8. ANEXOS

ANEXO I: ESTRUCTURQA DE DESCOMPOSICION DEL PROYECTO

En la siguiente figura se muestra la descomposicién del proyecto europeo NM-RS y la
division en médulos del mismo. El proyecto fin de carrera presente se ha basado en el
desarrollo de parte del modulo M45.

A continuacion se detallan los elementos del médulo M45, destacando con borde
negro los elementos desarrollados en el presente proyecto final de carrera.

Proyecto NM-RS

Modulo M45

.z

Gestion del
proyecto

Simulacién en

MATLAB

1
Simulacién en
MRS
Disefio del
simulador
Algoritmos
Mapeado
Disefio de
ensayos

La gestion del proyecto consiste en planificar el proyecto al comienzo del mismo y
realizar un seguimiento y control durante toda la duracion del mismo. Este proyecto se
ha realizado mediante reuniones enmarcadas dentro del proyecto NM-RS.
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Disefo del
simulador

Simulacion del/gSimulacion del Configurador
terreno laser de parametros

Algoritmos
Mapeado en 2D division del mapa
en celdas

Mapeado en 3D

Algoritmos
informacion
complementaria

Algoritmos | Algoritmos

mapeado localizacién

Algoritmos fusion

Integracion

Pruebasy
ensayos
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Estudio de
SNERES
referencia

Diseno lectura
del laser

Algoritmos
transformacion
de coordenadas

Mapeado en 3D |

Algoritmos
division en
celdillas

Ensayos

Estimacion de
alturas y
gradientes
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Asignacion de
ocupacion

Algoritmos
informacion
complementaria

Asignacion
libertades

Ensayos

Comparacion de
metricas

Algoritmos

L Método SIFT
localizacion

Ensayos

Estudio

Algoritmos

fusion Desarrollo

Simulacién
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Integracion

Ensayos
reconstruccion

Integracion y

pruebas

Ensayos algoritmos
de informacion
complementaria

Ensayos
localizacion
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ANEXO II. PLANIFICACION. DIAGRAMA DE GANTT.

2 agq Hamsz | Durstion Detcber

1 Formacion v dozumentacion previa J3days

2 |Formscion previs en programacion y agoritmica 29 dayz

3 |Aprendizaje Matlal R2007 20 days

4 |Consuita doeumeniacion previa NIA-35 Ddays

3 |Digefio blogue M45 244,76 days|

[ Planificacion 18 days

7 Caracterizacion herramientas necesarias T days

] Cesamollg del simulador del terrsro 13 days/
4 Cesamolle del simulador del lazer 18 days|
10 Disefo Sigtema de Mapzado en 2D 17 dayz

11 Algoritmos division del mapa en celdillas 17 days!
12 Diseno del Sistema de Mapeada en 3D 84,88 days
4 Esludio dferentes sistemas de re‘srencia 4 dayz
14 Esiudio d= implaniacion matrz medidas del laser 4 days

i3 Algoritmos fransformacion de cocrdznadas 17 days

16 Algontmos division del espacio er celdillas T days
4 Ensayoe v simulacionss 10 days!
18 Redizedio de (32 fransfarmacioras de coordenzdas & days

19 Comprobacion ce resutados Sdays
20 Algontmo inicial de estmacion de akuras y gradieniss 11 days|
4 Ensayoe v simulacionss B dayz
2 Rediszfio del zlgoritme de 2stimacion de aturas y gredizntas T days
23 Diserio de los Algeritmes de Infarmacien Complementaria 24,25 days
24 Algontmos de asignacior de ocupacion 4 days
et} Esiudio d= alcoritmoe de asicnacion de iberades B dayz
el Deszarrallo ce algoritmos de asignacion de liketadss S days
7 Enzayos y simulacionss T days
N Disefio de Algoritmos de ayuda en la localizacion (SLAM) 2 days
28 Algentmoz de localizacion por comparacion de metticas 20 dayz
0 Algontmos de S_AM visual, metodo SIFT 22 days

3 Ensayos y simulacionss T days
4 Redisedo del algoritmo de locaizacion 10 days!
33 Disefo de Algoritmos de Fusion ce la Informazion 30 dayz
24 Esiudio d= Ios algorimes necesanios 4 days

3 Desarrolle cglos algortmos 20 days
4 Simuacion ¢ comprobacion de resultados & dayz
v Integracion 21 days
et Pruebas y correccionzs M days

3 Pruebas de reconstraccion S days
4 Pruebas de localizacion 16 days|
1 Pruebas algontmica complementaria B dayz
42 |Documentacion 63 days
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v
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ANEXO lll. PRESUPUESTO

A continuacién se detalla el presupuesto del proyecto realizado, hay que tener en
cuenta que los calculos son aproximados, para considerar que el desarrollo del
software realizado no solo se amortizaran en el presente proyecto sino que se utilizara
en otros proyectos.

UPM

Concepto Valor

Inmuebles:
Alquiler laboratorios 12.000,00 €
Mantenimiento y Servicios 3.000,00 €
Subtotal 15.000,00 €
Equipos hardware
PCs 2.000,00 €
Comunicaciones 500,00 €
Mantenimiento 500,00 €
Subtotal 3.000,00 €
Software
Licencias software 2.000,00 €
Subtotal 2.000,00 €
Personal
Ingeniero 800 horas, 30 €/h 24.000,00 €
Director del proyecto, 150 horas, 60 €/h 9.000,00 €
Subtotal 33.000,00 €
Total del proyecto 53.000,00 €
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ANEXO IV. EL FILTRO DE KALMAN

El Filtro de Kalman Discreto

En 1960, R.E. Kalman public6 un famoso documento describiendo una solucion
recursiva a el problema de filtrado de datos lineal y discreto. Desde aquel tiempo,
debido en gran parte a los avances en computacién digital, El filtro de Kalman ha sido
objeto de numerosas investigaciones y aplicaciones, particularmente en el area de
navegacion asistida o autbnoma.

El proceso a estimar

El filtro de Kalman direcciona el problema general de tratar de estimar el estado
x € R™ de un proceso discreto en el tiempo que es gobernado por una ecuacién
diferencial lineal y estocastica :

xk = Axk- 1+ Buk + wk- 1 (86)

Con una medida z € R™ que es:

zk = Hxk + vk (87)

Las variables aleatorias wk y vk representan el ruido del proceso y de la medida
respectivamente. Se asume que son independientes una de la otra, blancas y con una
distribucion de probabilidad normal

p(w) ~ N(0,Q) (88)
p(v) ~ N(O,R)

En la practica, la matriz de covarianza del ruido Q y la matriz de covarianza de la
medida R pueden cambiar a cada paso o medida, sin embargo aqui asumiremos que
son constantes.

La matriz A n x n en la ecuacion diferencial anterior relaciona el estado en el paso
anterior k-1 con el estado en el estado actual k, en ausencia de ruido. Pero en la

UPM Enrique del Sol Acero 163



practica A puede cambiar con cada paso, pero aqui asumiremos que es constante. La
matriz B de dimensiones n x | relaciona la entrada de control u € R! con el estado x.
La matriz H de dimensiones m x n en la ecuacion de la medida relaciona el estado con
la medida zk . En la practica H puede cambiar con cada paso o medida, pero aqui la
consideraremos contante otra vez.

Los origenes computacionales del filtro

Se define la variable X, € R™ (notese el signo menos) siendo es estado a priori al

paso k mostrando el conocimiento del proceso a priori al paso k, y X, € R" sera el
estado estimado posteriori en el paso k con la medida zk. Se puede definir los errores
de los estados a priori y a posteriori de la siguiente manera:

La covarianza del error estimado a priori es entonces:

Py = El[ege; "], (90)

y la covarianza del error estimado a posteriori es:

P, =E[e, e/]. (91)

Derivando de las ecuaciones del filtro de Kalman, se comienza con el objetivo de

encontrar una ecuacion que calcule el estado estimado a posteriori X, como una
combiacion lineal de un estado a priori y una diferencia ponderada entre la medida

actual zk y la prediccion de la medida Hx,, tal y como se muestra en (92).

%, = %+ K(zk- Hxy) (92)

La diferencia (Zk— Hx,;) es llamada innovacion en la medida, o residuo. El residuo

relfeja la discrepancia entre la prediccion de la medida Hx,, y la medida actual zk. Un
residuo nulo indicaria que las dos estan en completo a acuerdo.
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La matriz K de dimensiones n x n de (92) es elegida de tal forma que la ganancia K
minimice la covarianza del error a posteriori (91). Esta minimizacién puede ser llevada
a cabo sustituyendo (92) en la definicién de e, , sustituyendo todo ello en (91)
desarrollando las operaciones indicadas, derivando el resultado respecto a K,
igualando el resultado a cero y resolviendo para K.

K, = P;HT(HP;H" + R)™!
P;HT (93)
~ HP;HT+ R

Observando (93) se puede ver que cuando la covarianza del error se aproxima a cero,
la ganancia K hace el residuo mas pesado. Especificamente:

lim K, = H!
am, e (94

Por otro lado, al aproximarse la covarianza del error estimado a priori Pk' a cero, la
ganancia K pondera el residuo con menos fuerza. Especificamente:

A, Kie = 0 (95)

Otra forma de ver la aportacion de K seria ver como segun la covarianza de la medida
del error R se aproxima a cero, la medida actual zk es mas confiable, mientras la

medida predicha Ha?,; es cada vez menos fiable. Por otro lado, asi como la covarianza
del error estimado a priori B, se aproxima a cero la medida actual Zk es cada vez

menos fiable, mientras la prediccion de la medida Hx, es cada vez mas fiable.

Los origenes probabilisticos del filtro

La justificacion para (91) viene de la probabilidad para un estado estimado a priori x;
condicionado por todas las medidas a priori zk (Regla de Bayes). Por ahora es
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suficiente con sefialar que el filtro de Kalman mantiene los dos primeros momentos de
la distribucion del estado.

Elxy ] = X
(96)
El(xy — %) (e — £)7] = P

La estimacién del estado a posteriori (91) refleja la media (el primer momento) de la
distribucion del estado, que tendra distribucion normal si las condiciones de (88) se
verifican. La covarianza de la estimacion del error a posterior (90) refleja la varianza de
la distribucion del estado, en otras palabras

Pxel zk ) ~ N(E[xy 1, E[(xx — &) (X — 2i)"] = N(Re, Pr) (97)

El algoritmo del Filtro de Kalman discreto

Esta seccion comenzara describiendo de forma breve la operacion de alto nivel de una
forma de filtro de Kalman discreto. Despues, se centrara en las ecuaciones especificas
para este tipo de filtro.

El filtro de Kalman estima un proceso usando una forma de control realimnetado: es
filtro estima el estado de un proceso en un tiempo determinado y después obtiene
relaimentacion en la forma de medidas con cierta cantidad de ruido. Por ello, las
ecuaciones del filtro de Kalman forman dos grupos: ecuaciones actualizadas con el
tiempo y ecuaciones actualizadas con la medida. Las ecuaciones actualizadas con el
tiempo son responsables de proyectar hacia adelante (en el tiempo) el estado actual y
la estimacion de la covarianza del error para obtener una estimacion a priori por el
siguiente paso de tiempo. La actualizacion de las ecuaciones de la medida son
responsables de la realimentacién. Por ejemplo, por incorporar una nueva medida en
una estimacién a priori para obtener una estimacion a posteriori mejorada.

Las ecuaciones actualizadas con el tiempo también pueden ser entendidas como unas
ecucaciones predictivas, mientras que las ecuaciones de actualizacion de la medida
pueden ser entendidas como unas ecuaciones de correccion. De hecho la estimacion

final del algoritmo crea un algoritmo de prediccion-correccion para resolver problemas
numeéricos.
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N Actualizacion con la
Actualizacién temporal

“Prediccion” medida

“Correccion”

Figura 93. Ciclo del filtro de Kalman discreto

Las ecuaciones especificas para la actualizacién con el tiempo y con la medida son las
siguientes:

Ecuaciones actualizadas con el tiempo para el filtro de Kalman discreto

Rr = AX,_, + Buk (98)
P = AP,_ AT+ Q (99)

Notese de nuevo como las ecuaciones actualizadas con el tiempo proyectan las
estimaciones del estado y la covarianza desde el paso k-1 hasta el paso k. Ay B son
desde (86), mientras que Q viene de (88).

Ecuaciones actualizadas con la medida para el filtro de Kalman discreto

K, = P;HT(HP;HT + R)™! (100)
Ry = X + Kp(zk- Hxp) (101)
P, = (1-K.H)P; (102)

La primera tarea durante la actualizacion de la medida es calcular la ganancia de
Kalman, K, . Notese que la ecucacion dada aqui como (100) es la misma que en (93).
El siguiente paso es actualizar la medida del proceso para obtener zk y entonces
generar una estimacién del estado a posteriori incorporando la medida como se
muestra en (101). De nuevo (101) es simplemente (92) repetida aqui para
completitud. El paso final es obtener una estimacion de la covarianza del error a
posteriori via (102).

Despues de cada par de actualizacién de tiempo y medida, el proceso es repetido con
la estimacién previa a posteriori usada para proyectar o predecir unos nuevos valores
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estimados a priori. Esta caracteristica recursiva es una de las mas atractivas del filtro
Kalman, y que hacen del mismo que las implementaciones practicas sean mucho mas
factibles que en otro tipo del filtros como el de Wiener que esta disefiado para operar
con todos los datos directamente en cada estimacion . El filtro de Kalman en lugar de
eso opera de forma recursiva desde el estado anterior.

Parametros del filtro y ajuste

En la implementaciéon actual del filtro, la covarianza del ruido de la medida R es
usualmente medida de forma anterior al funcionamiento del filtro. Medir la covarianza
del error de la medida es generalmente posible porque se necesita medir el proceso
en cualquier caso por ello se deben tomar diversas muestras off-line para determinar
la varianza de la medida.

La determinacion de la la covarianza del ruido del proceso es generalmente mas dificil
porque usualmente no se tieen la habilidad de observar el proceso que se esta
estimando. A veces un modelo relativamente simple puede producir resultados
aceptables si uno ‘“introduce” cierto grado de incertidumbre en el proceso
seleccionando Q adecuadamente. Ciertamente en ese caso se puede esperar que las
medidas del proceso sean factibles.

En otro caso, tanto si se tiene o no base racional para la eleccién de los parametros, a
menudo se puede obtener un rendimiento varias veces superior ajustando los
parametros Q y R del filtro. El ajuste es realizado normalmente off-line, frecuentemente
con la ayuda de otro filtro de Kalman en un proceso referido a la identificacion del
sistema.

Actualizacion con la medida
Actualizacion con el tiempo (“Correccion”)

(“Prediccion”)
(1) Calcular la ganancia de
(1) Proyectar el estado hacia Kalman

adelante
K, = Pk_HT(HPk_HT + R)_1
flz = Afk_l + Buk
(2) Actualizar la estimacidn con
(2) Proyectar la covarianza del la medida Zk

~

X, = X, + Kx(zk— Hxy)

1A A . 1 ' . o

Figura 94: Ciclo completo del filtro de Kalman con ecuaciones de actualizacién
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Para completar hay que dejar notar que bajo ciertas condiciones donde Q y R son de
hecho constantes, la estimacion de la covarianza del error P, y la ganancia de Kalman

K, se estabilizaran rapidamente y entonces permaneceran constantes. En ese caso,
estos parametros pueden ser pre-calculados ejecutando el filtro off-line, o por ejemplo
determinando el valor del estado estacionario de P, .

Es frecuente sin embargo el caso de que el error en la medida no permanezca
constante. Por ejemplo, cuando las balizas de avistamiento en seguidores
optoelectronicos para paneles de techo, el ruido en las medidas de las balizas
cercanas sera mas pequefio que en las balizas lejanas. Tambien, el ruido del proceso
Q es a menudo cambiado de forma dindmica durante la operacion del filtro,
haciéndose Q, para ajustarse a diferentes dinamicas. Por ejemplo, en el caso del
seguimiento de la cabeza de un usuario de un entrono virtual 3D se puede reducir la
magnitud de Q, si el usuario parece moverse de forma lenta, e incrementar la

magnitud si la dindmica empieza a cambiar rapidamente. En cuyo caso @, debe ser
elegida tomando en cuenta ambas incertidumbres sobre las intenciones del usuario y
la incertidumbre del modelo [15].

EL FILTRO DE KALMAN EXTENDIDO (EKF)

El proceso a estimar

Como se describe en secciones anteriores, el filtro de Kalman resuelve el problema de
intentar estimar el estado x € R™ de un proceso discreto en el tiempo que es
gobernado por una ecuacion diferencial lineal y estocastica. Pero, ;que ocurre si el
proceso a ser estimado es no lineal o si la relacion de la medida con el proceso es no
lineal?. Algunos de las mas interesantes y existosas aplicaciones del filtro de Kalman
se encuentran en estas situaciones. Un filtro de Kalman linealizado en la media y
covarianzas actuales es denominado el filtro de Kalman extendido o EKF.

Haciendo algo parecido a las series de Taylor, se puede linealizar la estimacién
alrededor del estado actual usando derivadas parciales del proceso y de las funciones
de medida para calcular estimaciones incluso en relaciones no lineales. Por ello, se
debe comenzar modificando algunas de las ecuaciones antes expuestas. Asumamos
que en el proceso otra vez existe un vector de estado x € R", pero que ahora el
proceso es gobernado por una ecuacion diferencial estocastica no lineal

X = f(Xpem1,Uk» Wi—1) (103)
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con una medida z € R™ que es:

7z = h(x vy) (104)

Donde las variables aleatorias wy, y v, vuelven a representar el ruido del proceso y de
la medida como en (93) y (94). En este caso la funcién no lineal f en la ecuacion
diferencial (103) relaciona el estado en el estado anterior k-1 con el estado en el punto
actual k. Esto incluye como parametros cualquier funcion u,, y el ruido de media cero
wy . La funcién no lineal h en la ecuacién de la medida (104) relacién el estado x;, con
la medida z, .

En la practica no se conocen los valores del ruido w, y v, en cada paso de
ejecucion. Sin embargo se pueden aproximar los vectores de estado y de medida sin
ellos de la forma:

e = f(Z-1,, 0) (105)

Ze = h(%,0) (106)

Donde %, es alguna estimacion a posteriori del estado.

Es importante notar que un fallo fundamental del EKF es que las distribuciones de
varias variables aleatorias dejan de ser normales después de caer bajo
transformaciones no lineales. El EKF es simplemente un estimador del estado que
aproxima la optimalidad de la regla de Bayes por linearizacion.

Los origenes computacionales del filtro

Para estimar un proceso con relaciones no lineales con la medida comenzaremos
escribiendo unas nuevas ecuaciones de gobierno que linealizan un estimador sobre
(104) y (106),

xk =~ fk + A(xk_1 - fk—l) + WWk_1 (107)
zk =~ Z~k + H(xk - fk—l) + Vvk_l (108)

Donde,
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e xky zk son los vectores del estado actual y de la medida

e X, Y Z, son los vectores de aproximacion del estado y de la medida de (105) y
(106)

e X es la estimacién a posteriori del estado en el paso k

e Las variables aleatorias wy, y v, representan el ruido del proceso y el ruido de
la medida como en (88) .

¢ A es la matriz Jacobiana de derivadas parciales de f respecto a x, esto es

il s
A = 5y Tt 0 (109)

e W es la matriz Jacobiana de derivadas parciales de f respecto a w,

ol ~
Wi,y = —aw[lj] Ry g, 0) (110)

¢ H es la matriz Jacobiana de las derivadas parciales de h respecto a x,

Hyy = 20 o) (111)
i, )
o

o V es la matriz Jacobiana de las derivadas parciales de h respecto a v

Vi o = %(*‘ 0)
1) = G, B (112)

Notese que por simplicidad en la notacion no se usa el subindice k con las Jacobianas
A, W, HyV, incluso cunado estas sean diferentes en cada paso temporal.
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Ahora se definira una nueva notacion para el error de prediccion,

y el residuo de la medida,

by = 2 — 2 (114)

Recuerdese que en la practica no se tiene acceso a xk en (113), puesto que es la
cantidad que se esta tratando de estimar. Por otro lado no se tiene acceso a zk en
(114) ya que es la medida actual que se utiliza para tratar de estimar xk. Usando (113)
y (114) se puede escribir las ecuaciones que gobiernan el proceso de error como

Er, ~ Alxkoq — Ry1) + &1 (115)

&, ~ H(&x)+m (116)

Donde ¢, y 1, representan nuevas e independintes variables aleatorias de media cero
y matrices de covarianza WQW7T y VQVT, con Q y R como en (88).

Notese que las ecuaciones (115) y (116) son lineales y recuerdan a las ecuaciones en
diferencias del filtro de Kalman discreto. Esto hace que se piense en usar el residuo de

la medida &, en (116) como segundo filtro de Kalman para estimar el error de

prediccion é,, dado por (117). Este estimador, llamado &, podria ser usado junto con

(115) para obtener una estimacion el estado a posteriori para el proceso original no
lineal como,

k\k =fk+ ék' (117)

Las variables aleatorias de (115) y (116) tienen aproximadamente las siguientes
funciones probabilisticas de distribucion:

p(&y,)~N(0,E[6y,8x,"]) (118)
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p(&)~N(O, WQkWT)
(119)

p(m)~N(0,VR,VT)
(120)

Haciendo esas aproximaciones y dando a é, el valor de cero, la ecuacion del filtro de
Kalman usada para estimar é, es

ér = K&y, - (121)

Y sustituyendo (121) en (117) y haciendo uso de (116) se puede ver que no se
necesita el segundo filtro de Kalman:

)?k = fk + Kkézk = fk + Kk(Zk - Zk ) (122)

La ecuacion (122) puede ser usada ahora como actualizacion con la medida en el filtro
de Kalman extendido, con X, y Z, viniendo de (107) y (108), y la ganancia de Kalman
K, viniendo de (94) con la sustitucién apropiada para la covarianza del error de la
medida.

El juego completo de ecuaciones para el EKF sera mostrado a continuacion. Notese

que se ha sustituido X, por %, para hacerlo consistente con el superindice menos de
la notacién a priori, y ahora se afade el subindice k a las Jacobianas A, W, Hy V, para
reforzar la idea de que son diferentes a cada paso de tiempo.

Ecuaciones actualizadas con el tiempo para el EKF
X = f(Fp-1,u, 0) (123)
Pi = AxPp A" + Wi Qo Wi" (124)
Asi como en el filtro de Kalman basico, las ecuaciones de actualizacion con el tiempo
proyectan la estimacion del estado y la covarianza desde el estado previo k-1 hasta el

actual k. De nuevo f en (123) viene de (107), A, y W, son las Jacobianas del proceso
en el paso k, y Qy, es la covarianza del ruido del proceso en el paso k.
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Ecuaciones actualizadas con la medida para el EKF

K, = PgH," (HPgH," + ViR Vi)™

£, = &7+ Ky(zk—h(%3,0)

P, = (1—KgHy) P,

(125)
(126)

(127)

Asi como en el filtro de Kalman basico y discreto las ecuaciones actualizadas con la

medida corrigen las estimaciones del estado y la covarianza con la medida zk. De
nuevo h en (126) viene de (108), H, y V} son las Jacobianas de la medida en el paso
K, ¥ Ry es la covarianza del ruido de la medida en el paso k.

La forma de comportarse del EKF es la misma que la del filtro de Kalman lineal, por lo
tanto las figuras que se utilizaron anteriormente para explicar el funcionamiento del
filtro de Kalman basico se pueden inferir ahora para el EKF [15].

Actualizacion con el tiempo (“Prediccion”)

(1) Proyectar el estado hacia adelante

o

R = @iy 0)

(2) Proyectar la covarianza del error
hacia adelante

P{ = AP 1 A" + Wy Qo Wi”

Figura 95. Ciclo completo del filtro de Kalman extendido con ecuaciones de actualizacion

UPM

Actualizacion con la medida
(“Correccion”)

(1) Calcular la ganancia de Kalman

K, = P{H," (H P H,"
+ Vi RkaT)_l

(2) Actualizar la estimacién con la
medida zk
X, = X + Kp(zk
— h(%,0))

(3) Actualizar la covarianza del error
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Una caracteristica importante del EKF es que la Jacobiana Hj en la ecuacion de la
ganancia de Kalman K, sirve para corregir la progagacion o magnificacion solo de la
componente mas relevante de la informacién de la medida. Por ejemplo, si no hay una
correspondencia uno a uno entre la medida zk y el estado via h, la Jacobiana H, afecta
a la ganancia de Kalman de tal forma que esta solo magnifica la porcién del residuo

zk — h(x,,0) que no afecta al estado. Si ocurriera que sobre todas las medidas no
hubiera una correspondencia uno a uno entre la medida y el estado via h entonces se
puede esperar que el filtro diverja rapidamente. En ese caso el proceso seria
inobservable [15].
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